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SECTION 1 - INTRODUCTION AND SUMMARY

1.1 OVERVIEW

- Historically, the processing rate of single-processor computers

has increased by one order of magnitude every five years. How-

ever, this pace is slowing since electronic circuitry is coming

up against physical barriers. Unfortunately, the complexity of

engineering and research problems continues to require ever more

processing power (far in excess of the maximum estimated 3 Gflops

achievable by single-processor computers). For this reason,

parallel processing architectures are receiving considerable

interest, since they offer high performance more cheaply than a ;

single-processor supercomputer, such as the Cray.- They are evel-79

more attractive now, since their processing rates will, theoreti-

cally, be able to reach the teraflop region. This has resulted

in a proliferation of vendors offering a variety of parallel

processing architectures.

In the near future, highly parallel machines - machines with

hundreds or even thousands of processors cooperating on a single

problem - will be commercially available. It has been demon-

strated that these machines can provide enormous increases in

computational power, but is this power usable? The answer

depends on the extent to which programmers will be able to write

code that effectively exploits hardware capabilities. Program-

mers must contend with the complexity of managing asynchronous

interacting processes, the lack of experience needed to create

appropriate programming abstractions, and the tremendous varia-

tions in highly parallel architectures. As a result, it is
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extremely difficult to write a parallel program, and it is even

more difficult to write an efficient parallel program.

In this report, we discuss the software support available for

writing performance efficient parallel programs. In the

remainder of this section, we provide an overview of the diffi-

culties involved in writing such programs.

Section 2 sets the stage for the discussion by describing the

range of hardware architectures currently available. In Sections

3, 4, and 5 we survey the available programming support tools in

each of three areas: prograr specification; parallel debugging;

and performance evaluation and tuning. The appendices discuss

related issues of object-oriented programming and multiprocessor

operating systems.

1.2 DIFFICULTIES OF WRITING HIGHLY PARkLLEL PROGRAMS

Parallel programming is difficult because of the complexity of

parallel systems, our lack of experience and the large variations

in parallel architectures.

The complexity of highly parallel programs affects both their

specification and their debugging. Mechanisms for program

specification can be divided into those in which parallelism is

explicit and those in which it is implicit.

If it is explicit, the programmer is faced with the task of

decomposing his algorithm into its parallel components, coding

each as a sequential program, orchestrating their behavior with

communication and synchronization operations, and controlling

their mapping onto existing hardware. Currently, programming

support for these activities is minimal.
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Alternatives in which parallelism is implicit - based on auto-

matic program restructuring [Kuck83, Allen87, Koebel87] or on

novel languages and architectures (Nikhil87] - are being devel-

oped but may not be appropriate for many proposed architectures

and applications.

After a highly parallel program is written, it still must be

debugged. An executing parallel program generates potentially

overwhelming amounts of relevant information that the programmer

must absorb; worse, asynchronous systems do not have the consis-

tent global states or reproducibility that have formed the basis

for standard sequential break/examine debugging strategies.

In coping with the complexity of parallel programs, programmers

do not have the advantage of a ready set of abstractions built up

from years of collective experience. In the sequential domain,

we have developed a number of such abstractions or programming

paradigms. These paradigms - high-level methodologies common to

many effective algorithms, such as divide-and-conquer, dynamic

programming, or the greedy algorithm - provide a "tool kit" for

the programmer, giving him a place to start and the ad~antages of

accumulated experience with a particular strategy [Nelson87]. In

the parallel domain, common techniques (such as generate and

solve, iterative relaxation, passive data pool, systolic, or

compute-aggregate [Nelson87, Finkel87]) are only beginning to

emerge as paradigms.

More problematical than either complexity or lack of experience,

however, is the tremendous variation in the capabilities of

highly parallel architectures. It is easier to program in the

sequential domain, in large part, because there is a consensus on

an "idealized" von Neumann machine (having a small set of fea-

tures such as random access memory and a program counter)

[Segal]. This abstract machine serves to define the features

available for language translation and the features that must be
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implemented in hardware. Because sequential machines are

relatively uniform, the programmer can code for the idealized

machine, confident that his program will be efficiently

implemented and that his design choices will be adequately

reflected in the behavior of his program. Programmers can write

efficient code without knowing the low-level details of their

target architecture, and they can easily port their code to other

machines.

In the parallel domain, this is not possible because of the

diversity of architectures and the corresponding variations in

the models of computation that they support. Performance in the

parallel domain is often dependent on the match of algorithm and

architecture, forcing the programmer to consider architectural

characteristics of the target machine very early in the design

process. This reduces productivity and limits the portability of

the resulting code. It is unlikely that a single idealized

parallel machine will emerge but, in the future, as parallel

architectures evolve and stabilize, it may be possible to obtain

some of the benefits of the virtual machine approach by

considering small sets of idealized machines [Segall87].

1.3 WRITING PERFORMANCE EFFICIENT, HIGHLY PARALLEL PROGRAMS

There are many possible sources of performance degradation in

parallel systems. They' can be divided roughly into losses

manifested by busy processors and losses manifested by idle

processors (Segall87]. Busy processor losses can result from

communication overhead (due to the diversion of computational

resources), redundant computations (on data that has been

replicated to avoid the need for interprocess communication),

useless computations (as found in search programs, for example,

where multiple paths are pursued until the unsuccessful ones

terminate) and "reduced knowledge" (as found in "chaotic"
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algorithms where processors are not always using the most up-to-

date information). Idle processor losses include communication
delays (when processors must wait for data), lack of computation

to be performed (due to uneven allocation of work across proces-
sors), and inaccessible work (due to synchronization or locking).

Reducing program inefficiencies involves determining that a loss

of efficiency exists, locating the source of that loss and then
making the appropriate modifications [Segall87]. None of these

tasks is easy. They imply both the ability to predict and to
monitor performance. Prediction is needed in determining that a
loss exists and in evaluating the effects of possible modifica-
tions; monitoring is needed in validating models, in assessing

the extent of losses and in isolating their causes. New models
of performance prediction (algebraic, stochastic, simulation)

must be developed to take into account the complex interactions
between parallel algorithms and hardware. Transparent techniques

for program monitoring (transparent because they do not affect
the course of the computation) must also be developed. "Debug-

ging" parallel programs for performance will be even more
difficult than debugging them for correctness.

1.4 SUMMARY

Parallel computing offers new capabilities to system developers,
but it also presents new challenges. Researchers and developers

are evolving new ways of thinking about program design and new
language constructs to express parallelism. They are also

dealing with the complex problems of debugging and performance
tuning of programs that involve many loosely-coupled processors.
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This field is still in its infancy, and its methods and tools are

far from being standardized. This report attempts to survey the

current state-of-the-art by reviewing some of the most promising

new techniques.
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SECTION 2 - PARALLEL PROCESSING ARCHITECTURES

2.1 OVERVIEW

The parallel processing architectures offered by vendors are

usually designed with a specific range of applications in mind.

One major problem is that computer users often base their buying

decision on the specified processing speed without realizing that

the architecture may be totally unsuited to their application.

Users can find themselves in one of three situations: (1) the

architecture is well suited to the application and existing

algorithms, (2) the architecture is totally unsuited to the

application, and (3) the architecture is suited to the applica-

tion but the algorithms must be reworked to take advantage of the

architecture. Clearly, the first situation is ideal and the

second situation should be avoided. What is less clear, is what

happens when users find themselves in the third situation. A

knowledge of how to implement algorithms to take advantage of

parallel architectures leaves the user with more options and will

likely save time and money. What is described in this section

are the different parallel processing architectures and the

impact these architectures have on applications programmers and

users.

No one architecture has been singled out as the way to structure

parallel processors. True parallel architectures (i.e., those in

which individual nodes work together to speed up the execution of

a single program) can be categorized as either single-instruc-

tion, iultiple data (SIMD) or multiple instruction, multiple data

(MIMD) machines. SIMD machines simultaneously and synchronously
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execute the same instructions on different data streams. SIMD

processors can achieve very high levels of performance, but they

are unsuitable for many applications and are said to be difficult

to program. For this reason, recent develop work has focused on

MIMD architectures.

2.2 MULTIPLE-INSTRUCTION, MULTIPLE-DATA (MIMD) MACHINES

There are a variety of MIMD machines available, and these can be

classified by (1) the number of processors in the system, (2) the

organization of the memory (shared or local), (3) the intercon-

nection structure (bus, switch or binary N-cube based), and (4)

whether vector processing can be done. Perhaps the most dis-

tinguishing feature is the interconnection structure -of the

system. Three main techniques exist: (1) bus, (2) switch and

(3) binary n-cube based interconnections schemes.

2.2.1 Bus-Based Machines

Bus-based machines usually incorporate the global shared-memory

approach where processors access the central shared memory via

the communications bus (see Figure 2-1). One disadvantage of

this architecture is that the communications bandwidth of the bus

places an upper limit on the maximum number of processors in the

system. However, this can and has been remedied through the use
of multiple buses (see Figure 2-2). Some bus-based machines

include the FX Series from Alliant, Elxsi 1400, and Sequent

Balance 2100 (see Figure 2-1).

Alliant's FX/8 parallel computer supports a combination of pipe-

lined vector and scalar operations and can include up to 8 paral-

lel processors in combination with 12 sequential processors in a
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bus-based shared-memory configuration [Bond87]. "Disk striping"
on the FX/8 provides a transparent form of parallel disk I/O that
distributes individual files across multiple storage devices with
simultaneous access to multiple data elements.
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Figure 2-1. Sequent Parallel Processor
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Figure 2-2. Multiple Bus Architecture
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Each FX/8 parallel processor implements a 68020 instruction set

in custom logic with a wider (80-bit) parser, local cache, and

other hardware enhancements. In addition to basic vector and

floating-point operations, each parallel processor contains a

concurrency control unit (processor synchronization) and data

path interface (interconnect switch between instruction proces-
sor, control section, main memory and cache). Less complex

"interactive processors" offload serial processing, terminal

handling, disk I/O and operating system functions.

Alliant is the only current vendor whose products can run

standard Fortran programs in parallel without reprogramming.

Data dependencies between loop iterations running on multiple
processors are synchronized by special instructions and concur-

rency control hardware. However, other programming languages do

not support any automatic parallelization. Parallel actions in C

and Pascal are supported by libraries of vector and concurrent

operations, with versions of Ada and Lisp under development.

The Alliant operating system is a version of BSD 4.2 Unix modi-

fied to support a multiprocessor environment (similar efforts
have been in use at universities since 1983, cf [Barak85,

Emrath85, Janssens86].

Sequent's Balance and Symmetry machines use standard microproces-

sors (NS32332 and 80386, respectively) in a bus-oriented symme-
tric architecture. Sequent's operating system supports its

tightly-coupled shared-memory configuration with both BSD 4.2 and

AT&T System V Unix functions. C, Fortran and Pascal compilers

are supported with a parallel function library and a parallel
debugger. Ada, Cobol, Lisp and Prolog are under development.

2-5



A handbook from Sequent Technical Publications [Osterhaug86]

stresses that prior manual analysis is always required for
effective use of parallel programming language extention and

operating system function libraries. The assumed hardware

configuration contains multiple processors in a tightly-coupled
symmetric configuration on a common bus with shared memory,

hardware support for mutual exclusion, and dynamic load

balancing.

2.2.2 Switch-Based Machines

Switch-based systems consist of independent nodes (processor/

memory pairs) and are connected together through a switch. The
simplest configuration is a crossbar switch (see Figure 2-3)

which connects every element in the system; however, the hardware

costs and the complexity of these switches increases considerably
with an increase in the number of processing elements. More

practical techniques are needed, such as that of the Butterfly

switch from BBN Advanced Computers (see Figure 2-4), which is the

only switch commercially available. Other switch-based systems

are the Ultra Computer/NYU and the RP3/IBM.

N

N
P
U
T
S

N OUTPUTS

Figure 2-3. Crossbar Network
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The Butterfly switch allows communications between the processor

and memory elements, based on packet switching techniques. Each

node in the Butterfly system consists of a 68020 microprocessor

and a 6881 floating-point coprocessor with 1 megabyte of memory.

Collectively, these memory elements form a shared memory which is

accessible to every node. When nodes are added to the system,

extra columns and rows of chips can be added to the switching

system. Thus, for a linear increase in communications capacity,

the switching complexity only increases slightly faster than

linearly. At this time researchers are unsure whether the switch

complexity will place an upper limit on the number of processors

in the system.

4

12 12

R :.DAT 110 0l 5
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C 1

S 06 O

S
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-........... .....-.'.

BUTTERFLY SWITCH

Figure 2-4. BBN Butterfly Switch

2-7



BBN's Butterfly uses techniques similar to packet switching.

Switching nodes configured as a serial decision network provide
redundant paths between each processor node pair. Although mem-
ory is local to individual nodes, it appears to the programmer
that processors exist in a unified address space of shared memory

[Bond87].

Butterfly interconnect network topology resembles dataflow in a

fast Fourier transform (FFT), a recurring x-shaped pattern. As
more switching modules are added, communications capacity grows
nearly linearly, but growth of the number of wires being switched

is only slightly faster than linear. I/O boards can be attached
to any node for distributed access via the switching network.

Such an approach accommodates communications overhead without
adding contraints of message passing programming style or extra
latency (as occur with hypercube designs). Most programmers are
accustomed to shared-memory environments and can cope easily.

BBN provides two separate software development environments for
the Butterfly. Procedural languages are supported under the

Unix-like Chrysalis operating system, which offers numerous C and
Fortran function libraries. In addition to standard features

such as tasking, memory management and interprocess communica-
tion, this environment includes functions that permit concurrent

application of a single procedure to elements of a complex data

structure distributed across multiple processors. Each task sees

a common address space, and can be dynamically assigned to a
specific processor node.

Programmers who prefer a functional or applicative language are

supported with a complete multiprocessing CommonLisp environment.
User interface to the shared-memory multiprocessor Lisp is
provided by a front-end Symbolics 3600. Butterfly CommonLisp
permits simultaneous evaluation of multiple Lisp expressions in a
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single, uniformly mapped shared-memory context. Portions of its

design reflect concepts borrowed from Halstead's Multilisp

[Halstead84].

2.2.3 Hypercubes

Another popular architecture is based on the binary n-cube, or

hypercube, interconnection scheme. An n-th order cube having 2n

nodes with each node connected to its n nearest neighbors. The

hypercube interconnection scheme for eight nodes (an order 3

hypercube) is depicted in Figure 2-5. Hypercube architectures

are the best choice for problems requiring a large number of

parallel processors and are being extensively studied in academic

institutions and government laboratories. Hypercubes can run

multiple programs that operate on multiple sets of data. Each

node in the hypercube has its own memory, floating-point hard-

ware, communications processor, and copy of the operating system

and applications program. It is the communications structure and

independent nodal memory elements of the hypercube that allow

designers to expand these computers far beyond most other paral-

lel architectures.

Figure 2-5. A Hypercube of order 4
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Each node in a hypercube is independent and communicates directly

with its nearest neighbors, and via message-passing through

intermediary nodes to all other nodes. Because the communica-

tions is efficient between nearest neighbors, this architecture

is well suited to scientific and engineering applications involv-

ing loosely connected localized phenomena.

There are some issues with regard to hypercubes that, if addres-

sed, will increase their popularity even more. The issues mainly

arise from the hypercube's inability to support a shared-memory

architecture. For instance, non-neighbor communications rely on

message-passing, which is currently supported by software. This

routing software could be replaced by hardware, speeding up the

communications-considerably.

2.3 VERY-LONG-INSTRUCTION-WORD (VLIW) MACHINES

Explicit multiprocessing requires a close match between hardware

capability and application program structure, usually obtainable

only by manually reworking source code. However, the average

user wants parallel speedup to apply to entire programs rather

than parts of them, to be independent of application type and to

be transparent to the programmer. Multi-flow computer is

attempting to satisy these desires by using a combination of a

Very-Long-Instruction-Word (VLIW) processor architecture and

optimizing compiler technology. Although Multiflow's Trace

computer (Bond87] contains only a single CPU, it permits substan-

tial parallelism at the level of individual machine instructions

(assembly language operations with from 32 to 1024 bits of paral-

lel microcode and up to 28 scalar actions).

Each dedicated bit-field of the VLIW controls a data path or

pipelined functional unit, which execute synchronously (in a way

similar to a vector processor). Each instruction applies a
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variety of hardware functions to heterogeneous data rather than

repeating a single action across a uniformly typed array. Thus

each machine instruction accomplishes more work, regardless of

the properties of higher-level language source code.

Earlier attempts at overlapped execution in VLIW processors were

unable to optimize conditional branch or jump operations. When

operations are overlapped with prior conditional jumps, the

results of overlapped execution are frequently incorrect.

Multiflow overcomes this difficulty through trace scheduling and

compacting compiler technology. Conditional branches are

optimized via trial execution and statistical analysis during
compilation. Multiflow compilers (C, Fortran) profile a sample

run of each application to estimate conditional branch direction

and loop exit condition frequencies. Hardware resources and data

precedence then constrain compaction of lengthy execution paths.

2.4 THE CONNECTION MACHINE

Thinking Machines' Connection Machine [Hillis85, Hillis87I blurs

the distinction between SIMD and MIMD parallel processor archi-

tectures. Although multiple-data-element instructions are

broadcast to multiple processors and are executed in parallel on

an entire data set, the width of individual data elements is

dynamic (between 1 and 4096 bits), and single-data-element

instructions are executed on a front-end host processor.

Interconnection occurs either among four nearest neighbors via a

grid network or between an arbitrary pair of processors using a

hypercube router. The latter permits dynamic reconfiguration of

communication paths.
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Considerable attention has been given to provision of an appro-

priate set of data-parallel syntactic extensions for Connection

Machine LISP (Steele86, Hillis86]. Nevertheless, naive software

developers are likely to experience stylistic problems analogous

to those encountered by users of Goodyear Aerospace's Massively

Parallel Processor (a pure SIMD machine).

The Connection Machine's use of a huge number of processors, each

having rather modest computational capability, necessarily encum-

bers the application programmer with issues of fine-grained data-

level parallelism. Also, its hypercube topology places an abso-

lute limit on interconnection capacity with fixed latency between

two given processors (even when multiple paths are used).

One might argue that this is unimportant given the size of indi-

vidual CM processors: no single processor can ever get enough

work done to saturate its communication links. However, a pair

of processors each having 2/3 capacity is not obviously equal to

a single processor of unit capacity.

Although the Connection Machine can be configured to exhibit

moderate asymmetry, its inherent uniformity and small grain size

may not be well suited to real-time control applications.

2.5 THE APPLICATIONS PROGRAMMER'S VIEWPOINT

If an applications programmer is fortunate enough to have a say

in the design of a (MIMD) parallel processing machine, there are

several things to keep in mind. For instance, there is a trade-

off involving architecture simplicity and system extensibility -
the choice of the interconnection structure may have an effect on

the maximum number of processors in the system (e.g., a single-
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bus architecture is usually limited to 20 or 30 processors). The

organization of processor and memory elements will have an effect

on the performance of the system, as will the locality of data

and the ability to do vector processing.

If an applications programmer must go out and buy a ready-made

machine, there are similar considerations. First, the computing

power, the architecture, and the ability to accommodate a range

of applications must be considered. It must be remembered that

the performance specification alone is not an accurate indicator

of how the particular machine will work since it is optimized for

only a select range of applications. If an implementation for

the algorithms has been chosen, then an architecture that suits

this implementation must be found. A candidate architecture will

be even more appealing if it can support a variety of problems

that a programmer may need to solve in the future. If a suitable

architecture cannot be found, then the algorithms must either be

reworked, or suboptimal performance must be tolerated.

If a parallel processing machine has already been purchased, then

a different set of issues arise. Of utmost importance is knowing

how to map the problem onto the hardware to take advantage of the

parallel processing. Software tools exist to help programmers

describe the type of parallelism explicitly to the system (in the

form of subroutine libraries and language extensions). For

instance, the method of communications, which is dependent on the

memory organization, requires the addition of several language

extensions. For message-passing systems, "send" and "receive"

primitives must be supported. For shared memory systems, synch-

ronization support is needed.

Once a parallel machine is chosen, two approaches exist for pro-

grammers. One approach is to obtain a parallelizing compiler.

The other approach is to program in a good parallel language.
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There is a fair amount of research into the automatic parallel-
ization of sequential code by a parallelizing compiler. Although
this area of research is important, a compiler cannot rewrite an
algorithm (e.g., to improve performance), and programmers who are
encouraged to think in parallel will often find new ways to solve
a problem. Although explicitly-parallel programming is comple:,
those who have programmed in parallel find that it is not

fundamentally harder than conventional programming.

It is clear that much more research and experimentation is needed
in parallel processing to resolve the issues and controversies.

Multiprocessor vendors readily admit in conversation that no
single partitioning method is best for all problems. To be

effective, multiprocessing software design and implementation
benefits enormously from human intervention, only slightly from

automated analysis. Use of parallel algorithms with conscious
attention to concurrency is a key element of success. Some
automated speedup is possible, but it seems to work best for pure
numerical problems, or when restricted to low-level operations

(e.g., overlapping execution of processor instructions).

Substantial programmer training will be required for successful
implementation of complex software systems on parallel architec-

tures. Implementations designed for serial uniprocessor environ-
ments cannot be effectively transformed for multiprocessor execu-

tion without considerable algorithm change. Only moderate
performance enhancement is possible without human intervention
and without abandoning uniprocessor software design methods.

Unfortunately, few design tools are available. Yet even when
using a parallelizing compiler (e.g., Alliant Fortran), "for the

highest performance, it may be necessary to rewrite the original
algorithm to make it more concurrent" (Bond87].
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SECTION 3 - PROGRAM SPECIFICATION TOOLS AND TECHNIQUES

3.1 PARALLEL PROCESSING STRUCTURES

Parallel application design mostly involves decisions about

multitasking of closely cooperating processes, as distinct from

multiprogramming. Multiprogramming concerns simultaneous

execution of multiple unrelated programs (from different users,

without any inter-program synchronization, e.g., a multi-user

operating system on a uniprocessor). Multitasking implies

concurrent execution of several communicating functions

(programs, tasks) relating to a common objective, perhaps via

time-slicing rather than literal simultaneous execution.

Parallel computation from this viewpoint is primarily a hardware

extension of operating system features that have existed for

decades.

Multitasking speedup depends on the percentage of program execu-

tion time that can be spent performing actions in parallel

(rather than in sequence); the number of processors available;

hardware contention for I/O channels, system memory, disk storage

or other peripheral devices; and overhead for communication and

synchronization of multiple application fragments. An important

related issue is how evenly computational load can be balanced

among parallel tasks (running on separate piocessors).

Nearly every application program contains inherent sequences of

action that prohibit completely parallel execution. Despite

this, large portions of the typical application can be structured

to suit multiple processor environments. A multitasking design

naturally encounters two ways that a program can be decomposed:

data partitioning and task partitioning.
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Data partitioning creates multiple identical processes and

assigns part of a large data set to each one. This works best

when the same operations are performed repeatedly on uniform

collections of data (e.g., matrix multiplication, Fourier trans-

forms, ray tracing or signal processing).

Task partitioning (or function partitioning) expects that an

application performs many different operations on a small data
set. The program can be separated into numerous distinct tasks.

Task partitioning produces designs that are more difficult to
balance among processors, and which require moderate to substan-

tial programming effort to implement.

In either case, suitable partitioning of an existing serial

application requires profiling (cf (Maples85, Gregoretti86]),
which produces a subprogram-call frequency distribution and

dependency graph. Task partitioning focuses immediately on the

subprograms that consume most of the program's execution time.
Data partitioning searches through the subprogram call hierarchy

to find ancestors that contain loops. An "independent loop"
passes no information between iterations other than the value of

its loop index, and can be subjected to data partitioning for

parallel execution.

Multitasking operation involves issues of data protection,

scheduling, sequential dependency and task synchronization even

on a uniprocessor (with a global clock). (Osterhaug86] presents

a concise summary of relevant concepts as well as problems which
arise in an application (e.g., concurrent update of a file by

multiple tasks, and processor waiting or task suspension during

I/O).
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Published discussions of parallel processing often refer to

decomposition of a highly iterative, data intensive computation

as "partitioning." A large number of novel programming language

constructs have been developed to allow programmers to describe
how data-parallel operations should be partitioned (Karp83].

Much less attention has been given to automating the necessary
prior analysis, or to defining a parsimonious set of syntactic

extensions. Some authors use the term "parallel" only to mean
"data-parallel." Task-parallelism is also known as "multiproces-

sing," a topic nearly as old as computer science.

Task-parallel decomposition has to divide a computation into
semi-autonomous pieces (partitioning), schedule each task for

execution by one or more processors (scheduling), and coordinate
flow of control and data during execution (synchronization)

[Gajski85]. Task decomposition obtains only minor benefit from
data-parallel optimizing compilers and language syntax and is

often constrained by operating system and hardware architecture.

3.2 METHODS FOR EXTRACTING TASK-PARALLELISM

No single decomposition technique is appropriate for every par-

allel algorithm; there is no "one size fits all" method of
problem partitioning for parallel computation. Three major

approaches exist for mapping tasks among multiple processors

[Shen, Lee87]:

Graph-theoretic: task precedence and interprocessor

communication paths are represented as graphs, and some
form of minimal-cut algorithm is applied.
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" Mathematical programming: task assignment is viewed as

an optimization problem, and a suitable objective func-

tion is formulated.

* Heuristic: suboptimal but fast "rules of thumb" suit-

able for real-time computation are used.

Published strategies make use of all three approaches, and can

benefit from repetitive refinement (as successive analyses

clarify relationships among problem components).

Quasi-optimal assignment of tasks to processors is a scheduling
problem that can be reduced to mapping a "problem graph," which

relates the tasks, onto a "system graph" which links processing

elements [Shen85, Berger87, Lee87]. The system graph is undi-

rected, but the problem graph is normally a digraph (computation
proceeds through definite stages and working sets of resources).

Graph-theoretic reference papers describe this correspondence

among problem- and system- nodes and edges as a "homomorphism."

The scheduling problem is frequently constrained by how many

processors are available, the connection topology and communi-

cation bandwidth available among processors, or the maximum time

allowable to complete a computation. Expression of such con-
straints in an objective function (O.F.) leads naturally to

methods of mathematical programming.

Heuristics become useful when a solution must be obtained in

real-time and the O.F. so constrains the problem that an optimum

cannot be found quickly enough. Use of heuristics can usually be
restricted to one or a few subtasks within a larger framework.
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For algorithms which partition easily onto systolic arrays,

multiprocessor configurations promote "vertical" partitioning of

operations along parallel control paths with a minimum of inter-

processor communication. Array processors require "horizontal"

partitioning into quasi-synchronous vectors with substantial data

transfer between successive actions.

The major problem in multiprocessor systems is saturation of
communication channels when excessive amounts of data must be
transferred between tasks running on different processors. Lack
of channel capacity degrades computation throughput.

A method commonly used for judging how well tasks have been map-

ped to processors adds an interprocessor communication cost to a
processing cost to obtain weights for an O.F. Shen and Tsai

[Shen85] use a minimax approach that assigns tasks so that the
longest running task completes in as short a time as possible.
Their assignment model is a graph oriented mapping of the kind

briefly described earlier.

Shen and Tsai restrict the solution range with a reasonable, but

non-optimal initial partitioning, then use the O.F. to perform
state-space search for a (local) optin..-m via the A* algorithm

(Winston]. A* is an improved version of branch-and-bound search
that combines dynamic programming with an estimate of distance

that remains on an optimal path. Heuristic information (e.g., a
lower-bound estimate of minimum cost) enters as part of a func-

tion used to order candidate' nodes for processing by the A*

algorithm. The graph matching to be obtained is a weak homomor-

phism: if an edge exists between two task nodes in the problem
graph, an edge must also connect corresponding processor nodes

(to which the tasks are assigned) in the system graph. The
resulting algorithm is O(N**2) estimated via the number of node

expansions generated within I,', but Shen and Tsai observe that
graph matchiig problems are exponential in the worst case.
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Communication overhead is also an important consideration in

partitioning of a straight numerical computation for execution on
multiple processors. Adaptive mesh refinement is a technique of

finite element analysis which partitions a problem domain into
rectangular grid patches of varying dimensions. [Berger87l

examines the communication costs of mapping a mesh obtained via
binary decomposition onto three different multiprocessor connec-

tion geometries: a mesh-connected array, a binary tree, and a
hypercube.

Interprocessor communication for mesh arrays and hypercubes can

be viewed as occurring in two phases, which correspond to move-

ment along axes of a cartesian grid. Communication overhead

implied by mapping a problem to a particular interprocessor

connection topology can then be characterized using quantities of

Skewness: the ratio of maximum patch edge length to the
dimension of a patch in a uniform partitioning (which
divides a domain into grid patches having identical edge

lengths),

and

Dilation: maximum number of edges through which a datum

must pass during communication,

considered relative to a partitioning's

Depth: number of times a domain has been subdivided via

bisection of a region.
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Overlapping "chains" (linear arrays of processors all of which

receive from or send to an adjacent processor in a given step) of

data transfer give rise to "congestion" (the number of chains

contending for communication within a row or column). [Berger87]

assumes that a processor can send or receive only one item on one

communications link at a time. Two possible strategies for man-
aging congestion are considered:

* Permutation: data values are transferred one at a time

between communicating processors, with contention at

each separate transfer.

* Pipelining: each processor transmits data to all others

that require its result as a continuous action, blocking
communication access during the entire interval.

The total communication cost varies according to the strategy

adopted, and either strategy may be preferable depending on the
skewness and depth of a given problem partitioning.

(Berger87] also considers multiprocessors connected in a binary

tree configuration in which only leaf nodes perform computation,
while intermediate nodes perform communication. (These usually

suffer from traffic bottlenecks at the root, but fit naturally
with the given partitioning method.) For a binary problem

decomposition, performance of a binary tree configuration

approaches that of a nearest-neighbor mesh to within a linear

factor (of the depth of partitioning), given a sufficient number

(2**depth) of processors.

Mesh performance nearly equals that of a hypercube for a low

depth of partitioning (over a wide range of skewness). Hypercube
performance exceeds that of a mesh for high depth of partitioning
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and moderate skewness, but is not as clearly superior for very

low and very high skewness. Very high skewness yields a cost of

communication which dominates both the square root communication

latency of a mesh and the logarithmic latency of a hypercube.

(Lee87] presents an efficient strategy for mapping problem graphs

onto an arbitrary multiprocessor system graph using one of a set

of objective functions and an accurate characterization of the

communication overhead. An example from image processing is used

to motivate discussion and verify the algorithm's operation. Two

of the O.F.'s are claimed to be especially suitable for real-time

parallel processing.

The assignment model used is again a graph oriented mapping that

uses four square matrix data structures: a problem matrix (repre-

sents problem graph), a nominal distance matrix (the system

graph), an assignment matrix (maps problem to system), and a

communication overhead matrix (weights problem edges according to

their volume of traffic).

The O.F.'s presented are:

OF1: sum of communication overheads of all problem edges,

when no two edges need to communicate during the same

time interval

OF2: largest individual overhead among all edges, when all

problem edges must communicate simultaneously

OF3: sun of maximum overheads selected from a sequence of

working sets, when edges in a working set are needed

simultaneously and sets are encountered sequentially
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OF4: largest individual edge communication overhead selected

from among the maxima of working sets in a sequence

(this differs from OF2 because of reduced contention

assumed among edges due to working set segregration)

The authors provide detailed procedures for calculating communi-

cation overhead for either synchronous or asynchronous links. No

assumption is made about the shape of a communication path, but

it is expected that a path is described as a sequence of edges or

nodes. Treatment of dynamically configurable topologies (where

routing rules could be changed during successive steps) is left

for future research. The example application is mapped to a

hypercube topology, for which a shortest path can be determined

without search when source and destination nodes are specified.

Optimization of the problem to system mapping is possible at two

levels: either select a good initial assignment or pursue incre-

mental improvement of mapping. The most efficient method is to

do both. The optimization method presented in (Lee87] exchanges

selected pairs of problem nodes.

3.3 PROGRAM SPECIICATION WITH EXPLICIT PARALLELISM

To specify parallelism explicitly, the programmer must decompose

his algorithm into its parallel components:

* code the components as sequential programs

orchestrate their behavior with communication and

synchronization operations

* control their mapping onto the target hardware.
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This is a lot to expect from a programmer. At least for the near

future, however, it will be the most efficient method of exploit-

ing the capabilities of many MIMD architectures, particularly

MIMD nonshared memory architectures.

Programming environments supporting explicit specification of

parallelism should provide:

Scalability. Because parallel programs are often

developed "in the small" and then scaled for massive

parallelism, it must be possible to specify a "family"

of parallel programs parameterized by size.

Automatic distribution and specialization of code

segments. Often the processes of a highly parallel

program are nearly homogeneous and therefore, an

environment should provide convenient mechanisms for

the specification, distribution and specialization of

common code.

Explicit description of process interconnection struc-

tures. Explicit descriptions provide a natural medium

for understanding parallelism, a basis for graphical
displays, structural information potentially useful in

mapping and redundancy for automatic error detection.

Graphics interface. Programmers will need sophisti-

cated graphics to cope with the potentially overwhelm-

ing amount of information present in parallel programs.
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* iutomatic mapping of logical process structures onto

architectures. Mapping is an extremely difficult prob-

lem that requires detailed knowledge of the target

machine and, as a result, is beyond the capabilities of

many programmers. Environments should provide tools to

assist in mappings of arbitrary process interconnec-

tions to target architectures.

Recently, tools have been developed to provide some of the neces-

sary support, and we describe a few representative examples. In

each case, the tools were developed for nonshared memory archi-

tectures, and thus they share a model of computation in which

disjoint processes communicate through asynchronous messages.

The models differ, however, in their view of process structures

which may be either static or dynamic (depending on whether or

not they are known before runtime) and may be either single phase

or multiphase (depending on whether or not they are changed

between stages of the computation).

3.3.1 The Poker Parallel Programming Environment and Related

Tools

Poker (Snyder84], the first comprehensive parallel programming

environment, is based on a static, multiphased model of

computation. It provides unified facilities for specifying

parallel programs: sequential code segments, processor assign-

ments, interconnections, and the distribution of external data

streams are all described with a consistent graphics interface.

Originally designed for the CHiP family of architectures

(Snyder82], versions of Poker have been developed for the

hypercube and for systolic architectures.

3-11



A Poker program is a relational database. Five different speci-

fication modes are provided, each corresponding to a different

database view. Typically a programmer begins with a description

of his interprocess communication structure, which he provides by

manually drawing the necessary connections on a grid of proces-

sors. He then writes parameterized code for each of his process

types, using a standard sequential language with extensions for

interprocess I/O directed to logical ports. Two additional views

- one for assigning processes to processors and the other for

defining logical port names - are used to connect the code with

the communication structure. Finally, external I/O is specified

by describing the way in which file records are to be partitioned

into data streams on input and the way in which data streams are

to be composed into files on output.

Poker has many of the desirable features listed above - (limited)

automatic distribution and specialization of code, explicit des-

criptions of interprocess communication structures and a

graphics-oriented user interface - but, because the user must

manually embed his logical interconnection structure into a

processor lattice, it fails to provide full support for scal-

ability and it does not provide any support for mapping. The

Prep-P Mapping Preprocessor [Berman87] (not part of Poker)

addresses these problems.

Prep-P is a preprocessor that automatically maps arbitrary,

bounded-degree logical-interconnection structures onto target

CHiP machines, multiplexing code for processes assigned to a

single processor. Prep-P first contracts the interconnection

graph to the appropriate size for the target machine, partition-

ing the process set so that each partition executes on a differ-

ent processor. It then places the partitions of processes onto a

grid of processors and routes the necessary communication chan-

nels between them (currently routing is performed for the CHiP

machine).
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3.3.2 PISCES

While the original aim of Poker was to provide access to a spe-

cific architecture, the aim of PISCES ("Parallel Implementation

of Scientific Computing Environment") [Pratt87] was to provide a

stable environment for scientific and engineering applications

insensitive to changes in the underlying architectures. It

provides the FORTRAN programmer with a virtual machine that can

be efficiently implemented on a variety of MIMD architectures.

(PISCES 2 has been implemented on a Flex/20 and PISCES 3 is

planned for a hypercube.)

As in Poker, PISCES programs are tasks that communicate through

asynchronous messages; unlike Poker, PISCES uses a dynamic, but

single-phased model of computation. PISCES is less graphical

than Poker but it contains a number of novel features not found

in the earlier environment. PISCES permits the user to take

advantage of multiple grain sizes; tasks, subprograms, code

segments (for example, loop bodies) and arithmetic operations

(vector operations) can all run in parallel. Code segment paral-

lelism is implemented with "forces" [Jordan87J, which are groups

of tasks that run the same code and communicate through shared

variables. The number of processors executing a force is

determined by runtime availability. PISCES also makes use of
"windows" (Mehrotra82] to represent the partitioning of an array

that is to be simultaneously accessed by a number of processes.

In addition, PISCES promotes efficient implementations by

allowing the user to "see through" the virtual machine and

control its mapping onto the hardware. To do this the programmer

defines a configuration, specifying the number of process

clusters to use, the primary processor for each cluster, the

secondary processors for each cluster and the extent of

multiprogramming.
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3.3.3 MUPPET

The goal of MUPPET (a multiprocessor programming environment)

[Muehlenbein86], like PISCES, is to provide support for the fast

development of portable parallel programs for scientific

applications. Unlike PISCES, it is viewed not simply as a

programming environment but as a "problem solving environment"

which includes concurrent languages (needed to drive

architectures efficiently), a programming environment (consisting

of language-based editors, an interpreter and a simulation

system), applications environments (with applications-oriented

languages and expert systems) and a graphical man-machine

interface.

MUPPET is based on a dynamic, multiphased model of computation,

referred to as the Local Memory Abstract Machine (LAM) model.

The LAM model does not restrict communication, but it can be

refined into more restricted versions, such as the Ring LAM or

Tree LAM, which are then mapped onto the hardware. Three differ-

ent approaches to automatic mappings have been considered:

topological (in which an attempt is made to preserve processor

adjacencies); mathematical (in which the problem is treated as an
optimization problem); and adaptive (in which the system is

allowed to dynamically adjust to its loads) [Kramer87].

3.3.4 Polylith

The difficulty of implementing a single parallel program on a

single machine often precludes the possibility of experimenting

with a variety of implementations across architectures. Polylith

(Purtilo87] was designed to support such experimentation by pro-

viding for the fast prototyping of architecture-independent
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(portable) parallel programs. It uses a dynamic, single phase

model of computation. Programs are separated into "specifica-

tions" and "implementations." A specification describes a pro-

cess structure as a set of clusters that provide services through

visible interfaces and a set of interface bindings that establish

channels of communication. The implementation of a specification

consists of code segments (functions, procedures, subroutines,

etc.) that can be written in a variety of common languages. A

message handler is provided to realize communication, making it

possible to execute specifications even before their implementa-

tions are complete. Thus the Polylith programmer has a great

deal of flexibility in experimenting with alternate program

designs, and his programs can be ported to any target architec-

ture with an implementation of the message handler.

3.3.5 Sequent Fortran

Analysis of a loop to determine its suitability for parallel exe-

cution requires identification of the types of variables used. A

"shared" variable is either constant within the loop, or an array

each element of which is accessed by a single iteration. "Local"

variables are initialized in each iteration prior to use.

A "reduction" variable is an array or scalar that is used in only

one associative or commutative operation within the loop (i.e.,

multiplication/division, addition/subtraction, AND, OR, XOR) and

is a self-assignment (e.g., X = X - (Cl * C2) ).

The value of a "shared ordered" variable depends on exact

sequencing of loop iterations. If the iterations were executed

in random order, it would not end up with the correct contents.

A "shared locked" variable is a shared ordered variable which in

addition is read and written by more than one loop iteration.
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Sequent's Fortran compiler supports directives which permit the

user to mark loops and variables so that execution of loops which

contain shared, local or reduction variables are performed in

arbitrary order on multiple processors. Iterations of a loop

that has shared ordered variables must be arranged to occur in a

prescribed order. A shared locked variable imposes an additional

constraint: access by only one loop iteration at a time (mutual

exclusion among iterations with respect to the variable).

A requirement that Fortran programmers explicitly recognize and

mark data dependencies seems preferable to the sort of "blind"

parallelization performed by Alliant's compiler. NASA once lost

a Mariner probe to Venus due to a Fortran compiler's interpreta-

tion of a programmer's punctuation error (Annals84].

Similar considerations enter into design of multiple independent

tasks to execute "loop iterations" in parallel, which

(Osterhaug86] refers to as "microtasking". The tasks share some

data and make private copies of the rest. Data flow and synch-

ronization are controlled using special-purpose functions pro-
vided in Sequent's compiler libraries. The kinds of actions

permitted include forking of multiple parallel computations;

identification, census, suspension and termination of subordinate

computations; locking and unlocking of shared resources; forced

serial execution of marked sections of code; and microtask

synchronization.

Methods supported for functional decomposition of tasks are fork/

join and pipelining. Fork-join works best where no major func-

tion requires results from any other. Pipelining is easier when
major functions depend on each others' results and the data sets

involved are very large.
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A fork-join application first assigns each of a set of tasks to

access one element of a shared data set (the fork). Data that

can be simultaneously accessed by two or more tasks must be

protected by a lock. After doing its work, each subtask waits

until all the others have finished (the join).

Pipeline applications also assign tasks to access individual data

elements, but promote overlapping rather than simultaneous execu-

tion. The first task in line does its work, then writes its

results to shared memory, tells the next task in line that the

results are available, and fetches fresh input. Each successive

task reads the results of its predecessor(s) when it is ready to,

and passes its own results along to those which follow it. When

work runs out, each task terminates after writing its result.

Many applications require use of both approaches together.

3.4 PROGRAM SPECIFICATION WITH IMPLICIT PARALLELISM

Implicit parallelism is either detected automatically by a

restructuring compiler or it is inherent in the programming

language.

3.4.1 Automatic Programming Restructuring

Automatic restructuring of sequential programs for parallel

execution has been used primarily for scientific and numerical

applications on shared memory architectures. It allows the pro-

grammer to work in the familiar sequential domain, avoiding

problems of parallel program specification and parallel debug-

ging. In addition, it results in portable code. However,

effective data-level parallelism in non-numeric applications does
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not seem likely to emerge from automatic restructuring of serial

algorithms. Very good results have been obtained for numerical

algorithms [Padua80], but non-numerical algorithms appear to be

less tractible [Lee85].

A program can be viewed as a set of statements constrained by

data and control dependencies. Data dependencies arise from

access to common values, and control dependencies arise from

conditional branching. Dependency analysis has been used on con-

ventional compilers to insure that optimizing transformations

(such as code motion or dead code elimination) are legitimate.

The output of such an analysis is usually a graph in which the

nodes represent statements and the directed edges between them

represent dependencies. Program restructurers use the partial

orderings imposed by these graphs to schedule statements concur-

rently. Most restructurers focus on the medium grain parallelism

that exists between iterations of a loop because it offers the

greatest source of performance improvement (due to the high

degree of parallelism and the relatively even load balancing).

Loop iterations that are independent can have completely parallel

executions using the "forall" construct; those with dependencies

can often have staggered executions using the "doacross" con-

struct.

The Parafrase Fortran preprocessor performs static analysis of

source code, yet is not capable of transforming WHILE loops into

Fortran DO loops. This task was accomplished by hand in (Lee85].

For a reasonable sample of 15 non-numerical algorithms, automatic

restructuring resulted in good performance for 4, and acceptable

(but not good) for 2 during simulation of a medium-grain multi-

processor configuration (32 computing elements).
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Several categories of loops were uncovered that could not be

parallelized at compile time (Table II and Figure 3 of paper

[Lee85]). Performance improvement in such cases required use of

a different algorithm (designed for inherently parallel instead

of sequential or linear operation).

Ominously for any workers still pursuing Al research using

Fortran, the Parafrase preprocessor could not recognize the sort

of parallelism typically involved in linked list manipulation.

However, [Hillis86] and [Halstead851 describe several algorithms

for a parallel LISP which executes in a multiprocessor environ-

ment.

Many features from the Parafrase preprocessor are built into

Alliant's Fortran compiler. (Indeed, the Cedar supercomputer

under construction at the University of Illinois consists of

multiple clusters of Alliant FX/8 machines) [Kuck85]. The FX

compiler optimizes three types of loop operations for vector-

ization and concurrency [Alliant87]: a) DO-loops in vector-

concurrent mode, e.g., iterative array updates; b) Nested DO-

loops and multidimensional array operations; and c) DO WHILE

loops, in scalar-concurrent mode (i.e., elimination of redundant

expressions and invariant code).

Inclusion of statement and intrinsic functions does not inhibit

parallel optimization, however when an external procedure is

referenced in a loop, the FX compiler cannot make the loop con-

current unless explicitly instructed to do so via a source code

directive or command line option. Only restricted types of

Fortran statements are allowed optimized loops.
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Vectorization is possible when syntax use is restricted to data

assignment, COMMENT and CONTINUE statements, forward GOTOs and

arithmetic IF branches to labels within the loop, atomic IF/ENDIF

blocks nested to not more than three levels, and logical IF

statements. Concurrent execution is possible wherever vector-

ization is, and also in the presence of non-blocked ELSE IF

statements, block IFs nested more than three levels deep, GOTO

branches to labels outside the loop, RETURN and STOP.

Much of the work on program restructuring grew out of work on

vectorizing compilers developed at the University of Illinois,

where these techniques are now being generalized for MIMD

machines as part of the Cedar project (Kuck83]. The Cedar

restructurer is a source to source translator, converting

sequential FORTRAN programs into parallel FORTRAN programs that

make use of both "forall" and "doacross" parallelism. (Although

FORTRAN is used, the transformations would be applicable to many

high-level languages.) It is interactive, prompting the user for

assertions about his program that would remove suspected

dependencies. User assertions are checked at runtime. Invalid

assertions may result in correct, but non-optimal executions or

in program termination.

PTOOL (Allen87I is also a semi-automatic restructurer aimed at

exploiting loop level parallelism; it was designed for use with

the Denelcor HEP and the Cray X-MP. PTOOL users identify regions

that are potential candidates for parallelism (reducing the con-

siderable expense of considering all possibilities). These

regions are then analyzed for potential parallelism. Regions

without interdependencies are scheduled as "forall" loops;

regions with interdependencies are reported to the programmer

using diagnostic displays of potential conflicts.
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The BLAZE compiler [Koebel87] provides a source-to-source trans-

lation of programs from BLAZE into E-BLAZE with semi-automatic

domain decomposition. (Domain decomposition refers to the pro-

cess of distributing data on a parallel architecture). BLAZE is

a high-level language intended for scientific applications across

a variety of machines. It contains a single parallel construct,

the "forall" loop. E-BLAZE is a superset of BLAZE that provides

a virtual target architecture in the form of low-level tasking

operations, such as processor allocation, interprocess I/O and

synchronization primitives.

The pattern of data distribution is critical to performance even

in shared memory machines because of the disparity between local

and global memory access time and the costs of memory contention.
The BLAZE compiler performs domain decomposition based on general

patterns of distribution supplied by the user. Thus, for exam-

ple, the user might specify that a two-dimensional array be dis-

tributed across processors by rows or by columns or by blocks.

The compiler distributes the data based on this advice and then

performs subscript analysis (currently limited to subscript
expressions that are linear functions of at most one loop index)

to determine the locality of memory references needed for code

generation.

3.4.2 Novel Parallel Languages and Architectures

Restructuring compilers represent a somewhat roundabout approach:

first the user is forced to overspecify his program by giving a

total ordering of statements, and then the compiler is expected

to determine which of those orderings are significant. A more

straightforward approach would be to allow the programmer to
write in a language that does not force him to specify any
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sequencing, relying only on that imposed by data dependencies.

Dataflow machines and their associated languages are good exam-

ples of this approach. We discuss the Id language being devel-

oped at MIT for the Tagged Token Dataflow Machine [Nikhil87].

Id is a functional language (extended to include a form of data

structuring mechanism called I-structures) that was developed

with three objectives (Nikhil87]: (1) to insulate the programmer

from the details of his machines, including such details as the

number of processors available and the topology of their inter-

connections; (2) to free the programmer from the need to specify

parallelism explicitly; and (3) to provide for determinate compu-

tations, eliminating the need for scheduling and synchronization.

Id programs are trivially translated into dataflow graphs in

which nodes represent operations (instructions) and arcs carry

values, called tokens. The execution of an operation in a

dataflow graph is limited only by the availability of tokens.

Any operation that has at least one token on each input arc can

fire. As it executes, it removes a token from each input arc and

deposits a result token on each output arc. These graphs can be

executed directly by dataflow machines. There are a number of

such architectures under development (Nikhil7, Gurd85], and they

offer promising alternatives to more conventional approaches.

Although few or no researchers have developed methods for auto-

matic decomposition of a design into parallel components, at

least one team has worked on automated support for such problem

decomposition. The authors of [Kerner86] have combined concepts

from SADT and Petri-Nets to produce an automated executable

parallel design language, in which description of an algorithm is

strictly separated from its implementation details.
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EDDA is a dataflow design language with graphical notation sim-

ilar to SADT and a semantic structure resembling Petri-Nets.

Unlike Petri-Nets, EDDA can represent recursion. An EDDA design

contains predefined functional elements and obeys strict semantic

rules, and can therefore be compiled into executable code.

Programs are built in EDDA by combining graphical objects, called
"blocks." A graphical editor checks consistency of data paths

between constituent blocks of a diagram, and a database system

takes care of storage administration for large collections of

EDDA diagrams.

There are three kinds of blocks: elementary, data directing, and

flow directing. They represent primitive operations and data

types, compound data structures, and control structures, respec-

tively. Stepwise decomposition of small clusters of blocks (not

more than seven per diagram) produces an hierarchical system of

dataflow graphs.

A type name must be assigned to every data path in an EDDA design

(EDDA is strongly typed). Allowable types are either elementary

(int, real, char, bool or their derivatives) or built up by the

user using three classes of type structures. Each type structure

specifies a (multiway) split in the data type being defined. An

EDDA type specification also defines manipulation functions for

separating or combining individual data elements.

One of the type structures used in data directing blocks, "se-

quence," is equivalent to a Pascal record; such breakdowns are

marked with a "+". Another, called "iteration" ("1*"), subsumes

arrays and files (and assumes parallel access to individual data

elements). "Selection" ("x") is the third; it differs from the

iteration structure in merely choosing one of several alternative

data elements, rather than splitting a data structure into items

which can be processed in parallel.
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EDDA puts data structure ahead of control flow, similar to the

attitude exhibited by SADT, but avoids worrying about how to

accommodate details of physical storage. Constructs for storing

or retrieving data from individual memory cells are omitted.

Data can appear pnly on flow lines (in buffers) and cannot be

globally addressed. This prevents implicit serialization of data

accesses, but also neglects issues of communication topology (and

may encourage a message-passing design).

There are also three types of flow directing blocks: Case, Merge

and Loop (while/until). An EDDA Case routes incoming data to one

of several outputs, depending on guard conditions of the outputs.

When input consists of several paths, fresh data must exist on

all of the paths, or Case does not fire. If more than one guard

condition is satisfied by an input, it is routed to a single out-

put data path, selected with unfair non-determinism. Merge, the

inverse function of Case, combines all its inputs into one out-

put. Loop blocks permit arbitrary iteration.

Another type of predefined block exists to permit use of "foreign

language" subroutines in EDDA procedure diagrams. The parameters

of a foreign block must correspond to the names of its input and

output data paths. Any communication between foreign subroutines

which circumvents their explicitly declared ports is forbidden

(users cannot expect EDDA to detect problems that exist outside

of any design specification).

This mechanism has three motivations. "Programming in the large"

exhibits visible parallelism and benefits from functional pro-

gramming, whereas "programming in the small" tends to involve

short sections of strictly sequential code. Secondly, foreign

subroutines simplify the compiling process. Finally, EDDA users

are thus able to use preexisting routines written in conventional

programming languages.
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Two levels of EDDA exist. The first, EDDA-C, does not enforce

any constraint on flow of data elements (Petri tokens) between

blocks, and hence is subject to potential deadlock or overflow

due to combination of branching blocks (Selection-split, Case)

and merging blocks (Selection-combine, Merge). An EDDA-C subset

that omits recursion (EDDA-D) produces designs that can be easily

converted into Petri-Nets for deadlock analysis.

Addition of a simple structuring rule produces EDDA-S, and elim-

inates deadlock and overflow from conforming designs. For every

input token of a Case block (or Selection-split) exactly one

token must be produced on the output catapath of the correspond-

ing Merge block (or Selection-combine) (Raniel85].
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SECTION 4 - TOOLS FOR PARALLEL DEBUGGING

The overwhelming complexity of asynchronous, highly parallel

computation makes debugging support particularly important. At

the same time, however, it is difficult to provide this support

because parallel systems are not amenable to existing debugging

techniques. Parallel systems have enormous amounts of poten-

tially relevant information, they do not have meaningful global

states and they exhibit nondeterminism (time-dependent behavior).

Enormous Amounts of Relevant Information. It is hard

to keep track of relevant values for a single sequen-

tial program. It is even harder to keep track of the

values generated by a collection of cooperating proces-

ses. Thus, some form of information reduction is

necessary and methods of presentation are important.

Absence of Meaningful Global State. Since most archi-

tectures do not impose lock step execution, a system

may never reach a consistent global state in which all

instructions have terminated. Even if such states

existed, it is unlikely that the programmer could

interpret them because the state space is so large (due

to the many possible interleavings of instructions).

Presence of Nondeterminism. Because of asynchronous

operation, the results of a highly parallel program may

be time-dependent. This implies that errors are not

necessarily reproducible and that program monitoring

may not be transparent.
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As a result, the standard break/examine cycle of debugging does

not work. In this cycle, the user stops the execution of his

program to browse through the system state. He may then choose

to rerun the program to stop at an earlier break point, to get a

more detailed look at specific behaviors or to add additional

output statements. In parallel systems, break/examine techniques

are suspect because of the amount of relevant information to be

considered and because of the absence of meaningful global

states; cyclic strategies are not viable because of the absence

of reproducibility.

We can identify several possible solutions to these problems. In

the first, the system is reduced to sequential execution for

debugging purposes. Once the program has been debugged, it is

run in parallel. This approach gives the programmer a chance to

use a familiar environment with all of the many tools already

available for sequential debugging. It has the serious

disadvantage, however, of masking time-dependent errors, which

will reappear when parallel execution is resumed. In the second

approach, debugging is done post-morten based on information

collected during execution. This approach allows the user to go

back and forth over the trace as often as he likes. It is,

however, "one shot" in the sense that all relevant information

must be collected even before it is known that an error

occurred. Thus enormous amounts of trace data are maintained

during normal operation. The third approach attempts to reduce

the amount of relevant information by providing behavioral

abstractions - models of expected behavior that can be compared

to actual system behavior.

There are few extant parallel debuggers. The few that we have

chosen to discuss here were chosen not because they are repre-

sentative, but because they are novel and complementary.
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Together, they combine aspects of reproducibility, behavioral

abstraction and graphics-oriented user interfaces that could form

the basis for the development of a more sophisticated parallel

debugger.

4.1 CBUG

A concurrent debugger provides a direct means of observing not

only dynamic behavior of individual tasks but also interactions

between them. Many existing debuggers are not useful in multi-

processing environments. They are incapable of exploring many

problems that occur in systems of communicating asynchronous

tasks (e.g., deadlock, synchronization points, traces of

individual tasks, and other parallel actions).

More suitable tools can be tied either to the compiler or run-

time system of a programming language and operating system, or to

specific hardware. The former approach facilitates portability

across various processor designs and interconnect configurations.

A concurrent debugger must permit dynamic intervention by the

user and restrict the kind and quantity of information collected

and presented.

The debugger described in [Gait85] requires no modifications to

the target operating system, although it is dependent on specific

features of Unix. CBUG is hardware independent, even though tied

to a specific language and operating system, and thus may migrate

wherever C and Unix can. Its window-oriented graphics gather

activity from individual tasks together on a single display.

CBUG presents a uniform user interface at a source code level,

with the same perspective of concurrency as exists during program
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design and composition. The author's test environment uses C and
Unix system calls with semaphores and shared memory on a unipro-

cessor, however its design admits portability to an environment

having only message-based communication.

Supported debugging aids applicable to individual members of a
set of tasks include dumps of all accessible variables, condi-
tional or interactive breakpoints, and single-stepping execution.

Users can also trace execution across an entire task set, moni-
toring task invocations, interprocess synchronization points and
message traffic.

Tracing of subroutine calls and stack contents is omitted, being

considered of limited use in a multiprocessing environment. The
basic unit of a selective trace is a task. CBUG's author sug-
gests use of a conventional sequential debugger in situations
where such quantities are of interest. Breakpointing and single

stepping are of real use only in critical sections (of sequential
execution). A task set in CBUG executes transparently to

breakpoints and single-stepping.

CBUG modifies source code to return control to the debugger after
execution of each line, and to provide breakpoint testing, single
stepping, and status displays. During execution, only the orig-
inal source code is displayed. Task scheduling is performed by

the normal (non-deterministic) Unix scheduler.

A supervisory routine sets up required semaphores and communica-
tion channels, starts and terminates individual tasks. Each task

contains an embedded copy of CBUG, all of which communicate with

each other. The result executes more code than the programs
being debugged, and may thus potentially exhibit a probe effect
(in which delays introduced at each line of code may mask timing
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or synchronization errors). However, the probe effect did not

arise in normal testing performed by CBUG's author.

Trace windows make the reason for a deadlock fairly obvious. A

separate viewing area exists for each task, with provision for

command entry to CBUG, and display of I/O occurring on standard
Unix channels, pipes, shared memory, semaphores, open files, etc.

Concurrent programs may need to be run several times to expose

(or confirm the absence of) synchronization errors. A command

for slow tracing introduces an explicit and variable delay prior

to execution of each line of code (to expose probe effects).

4.2 DISDEB

Indeterminate timing relationships among tasks executing on sep-

arate processors prevent simultaneous intervention and make it

difficult to ensure debugger transparency. These relationships

can be distorted by excessive debugger overhead. [Lazzerini86]

describes a concurrent debugger developed for a multi-

microprocessor system designed for real-time process control.

The DISDEB system uses special-purpose hardware devices to mon-

itor concurrent processing with a minimum of overhead. No

changes whatsoever are made to compiled code. Only minor modifi-

cation of the operating system kernel is needed. Activity on a

target system is recognized as specific configurations of signals

on an (interprocessor) bus.

A high-level command interpreter resident on a host system coor-

dinates activity of several programmable debugging aid (PDA)

boards. Each PDA is connected both to a signaling bus (for com-

munication with the host) and to a bus on its target processor

(to intercept actions in real-time). (See Figures 1 and 2 of

[Lazzerini86].
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The target computer(s) provide protected memory environments

(nodes, perhaps comprising multiple processors), and Ada-package-

like protected access to programs executing therein. Standard

synchronization mechanisms (locks, semaphores) are supported with

message-oriented communication. A system configuration language

(SCL) specifies the number of processors per node, programs to be

executed thereon and their partitioning among processors, task

groupings and protection domains of programs, and levels of

protection/privilege associated with each function environment.

DISDEB is a widely distributed debugger for multiprocessing pro-

grams. Designing the debugging system as an optional add-on

component makes it possible to detect a wide range of conditions

on the target machine without slowing its execution. Generation

of an interrupt request internal to the PDA's microprocessor

triggers firmware that can implement complex actions required by

the debugging system.

4.3 BELVEDERE

The design of Belvedere is based on the belief that the behavior

of highly parallel programs is best understood in terms of the

flow of data and control resulting from interprocess communica-

tion and that these behaviors are often very structured: fine

grain, tightly coupled processes communicate across regular

interconnection networks resulting, at least logically, in pat-

terned data and control flows. Belvedere (Hough87] is,

therefore, a "pattern-oriented" debugger that enables the user to

identify, manipulate and animate communication patterns.

(Belvedere comes from the Latin bellus meaning "beautiful" and

videre meaning "view.") It is a trace-based, post-mortem

debugger.
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Belvedere treats the event trace of a system as a relational

database, providing animations of user-selected events. (Dis-

plays for animation are constructed from positional information

normally obtained during program specification.) Patterns of

expected interactions are described using the behavioral abstrac-

tion approach of Bates [Bates83], thus reducing the amount of

presented information. Abstract events are recognized in the

trace and made available as the targets of queries. Selected

abstract events can be animated from a number of user-defined

perspectives.

Belvedere is currently running within the Simple Simon Program-

ming Environment [Cuny87] (a rudimentary environment for

prototyping parallel programming support tools).

4.4 INSTANT REPLAY

A debugger should suppress irrelevant information to improve

human analysis of program errors. The debugging technique most

commonly used today is cyclic: a program is executed repeatedly

(using an interactive debugger) until an error manifests itself.

This is an improvement over an earlier technique, examination of

an exhaustive record ("dump") of states of an entire execution.

Such repetition works well for deterministic sequential programs.

Debugging parallel programs is difficult because their non-

determinism complicates cyclic debugging. Successive executions

of the same program may not produce identical results. A group

at the University of Rochester has developed a debugger for the

BBN Butterfly which enforces partial orderings among initially

non-deterministic multiprocessing programs (during repetitive

quasi-deterministic re-execution) without an exhaustive record of

intermediate data (Leblanc87].
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Parallel debugging must either collect all required information

for diagnosing program errors during a single execution (the
"dump" strategy revisited), or provide a mechanism to guarantee
reproducible program behavior. There are at least two problems
with the former approach. If the debugger is to capture all

potentially interesting events, the user must somehow specify
them prior to execution. Even given such specification, most of

the information collected is voluminously uninteresting.

The later approach, reproductible program execution, permits
application of cyclic debugging techniques. The authors of

[Leblanc87] mention several prior methods, each of which has
difficulties. Concurrent processes which interact through
semaphores exhibit a total (and reproducible) sequence of
synchronizations. The disadvantage of this method is that much
potential parallelism is lost by the required serialization of

semaphore actions.

Another method keeps a checkpoint record of each version of every

atomic object in a computation. This restricts computation to
programs structured as nested atomic actions, and incurs enormous

storage overhead. A detailed event log has also been used to
reproduce parallel program execution behavior.

Event logging has several disadvantages. Communication acts are

assumed to take place infrequently, and time needed to copy a
message to the log is assumed small relative to the time needed

to send the message. Again, space requirements for the event log
are daunting for real computations. Finally, this technique does

nothing to simplify determination of global effects of multi-task
interactions. Yet a simple modification avoids these problems.
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The technique of Instant Replay [Leblanc86] makes it possible to

reproduce *he behavior of a parallel program, based on a minimal
trace of process interactions. These interactions are modeled as

operations on shared objects. Each modification of such an
object produces a new version which is identified by a version
number unique to that object. Processes record the associated
version numbers on their inputs and these logs are used to replay

an execution. During replay, accesses to standard variables are
delayed until version numbers match the logged values; as a

result, each process consumes the same input values in the same
order and produces the same output values in the same order,
repeating the previous execution. The system can be cyclically

debugged, adding new (external) outputs and new break points
where necessary.

Only the relative order of significant events needs to be
recorded, not actual data associated with each event. Identical

inputs from the external environment are presented in the same
relative order during debugging replay as occurred during the
original program execution. This requires substantially less
time and space, and produces repeatable behavior because each

(sequential) task in a parallel program is deterministic. When
provided with a fixed series of inputs in a given order, it will

produce a fixed series of outputs in the same order each time.

The Instant Replay debugger models all interactions between tasks
as operations on shared objects. Modifications on the objects
are recorded as a totally ordered series of versions (a version
number is maintained and updated for each object). During re-

play, each process recomputes its own output values. The record
of object accesses is used to ensure that the same versions of
input values are used during replay as occurred originally.
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Instant Replay techniques have minimal impact on program execu-

tion since they do not log the enormous amounts of information
that might otherwise be needed and because the information that
they do record can be maintained locally, avoiding bottlenecks.
They could be used in conjunction with other trace-based debug-

gers such as Belvedere: during normal execution, the system
would generate the minimal trace needed for replay; if an error

is encountered, a replay would be used to generate the remaining
trace information. Instant Replay techniques have been success-

fully implemented on the BBN Butterfly.

Although this approach has many virtues, it may not be well
suited for real-time applications, which often receive input as
the result of asynchronous interrupts. Provision to record when
interrupts occur during program execution exacts a significant

performance penalty, and without it, timing of such inputs cannot

be accurately repeated.

The method also requires that the set of operations on shared
objects have a valid serialization: the result of each individual

operation must be equivalent to what would be obtained from a
definite sequential execution order of all the operations.

Shared objects must also be "regular": all reads not concurrent
with a write must get correct values, and any read that overlaps
a series of writes must obtain either the object value prior to
the first write, or one of the values being written.

Concurrent-read-exclusive-write (CREW), which ensures total
orderings of writers with respect to each shared object, of read-
ers with respect to writers of each shared object, and a partial

ordering of readers with respect to each shared object, is one
suitable object access protocol. Another simpler one, the
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mutual-exclusion (ME) protocol, forces serial execution of oper-

ating system event and queuing primitives, but reduces overhead

significantly for such atomic operations.

A separate "history tape" for each process records significant

events at an arbitrary level of detail, and is modified only by

its corresponding process. This is very useful for debugging

nondeterministic selection statements (by recording which

alternative was chosen), as well as system timeouts and clock

accesses.

Recomputation required to reproduce an execution sequence using

history tapes (rather than exhaustively detailed event logs) is

both an advantage and a disadvantage. The expense of maintaining

an arbitrarily detailed event log trades'off against the expense

of re-execution during replay. However, the repeatable execution

supported via history tapes allows programmers to continue to use

simple cyclic debugging techniques, e.g., addition of output

statements. Absent of the history log, such alteration often

changes the relative timing of operations and consequently, their

execution ordering. Successive replays also allow gradual

refinement of detail (i.e., avoids overwhelming a programmer with

incomprehensible amounts of output).

Another popular sequential technique is breakpoint insertion.

The ability to halt a distributed program in a consistent state

permits a programmer to examine the global state of a computation

(to the extent that such a state exists with respect to

communication delays). Finally, single-step execution can be

used to trace state transitions of individual processes without

destroying synchronization.
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SECTION 5 - TOOLS AND TECHNIQUES FOR PERFORMANCE

EVALUATION AND TUNING

5.1 PROBLEMS OF PERFORMANCE ESTIMATION

The performance of highly parallel architectures is critically

dependent on the match of algorithm to hardware. Thus it would

be nice to be able to answer such questions as:

Given an algorithm, which architecture would run it

most efficiently?

Given an architecture, what algorithm should be used to

solve a particular problem?

Given an architecture and an algorithm, what can be

done to improve performance?

Unfortunately, in most cases, the answers to such questions can-

not be determined because we lack the necessary performance

prediction and performance tuning tools.

The numerous parameters which influence performance of a

multiple-processor system make performance estimation exceedingly

difficult without detailed knowledge of a specific application.

Among parameters which may exert significant influence

(Cvetanovic86l are:
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a) inherent parallelism of the problem

b) decomposition method

c) processor assignment or scheduling method

d) subproblem granularity (grain size)

e) potential for interleaving processing and communication

f) memory access method (global versus local)

g) processor interconnection network topology

h) relative speeds of processors and communication links

The parameters are not entirely independent. For example, appro-

priate granularity for a given algorithm is highly dependent on

hardware features. The smallest feasible quantum of parallelism

is dictated by an algorithm's communication patterns and the net-

work topology [Reed87a]. Excessive parallelism can produce a

diminishing return of performance or even a decrease due to the

increased communication overhead.

Although there is a large body of literature on performance eval-

uation for sequential machines, many of the techniques developed
for those systems do not transfer into the parallel domain.

Because parallel problems are so complex, analytical methods

often fail and simulation techniques are often too expensive. It

is not even clear that we know the correct measures of parallel
performance (a common measure, MIPS, for example, may go down on

a vector processor as computation increases) [Segall 87].
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5.2 TOOLS FOR PERFORMANCE PREDICTION

5.2.1 Asymptotic Performance Limits

Static effects of interconnection topology are evident from exam-

ination of asymptotic properties of queueing networks. (Reed87a]

develops a simple analysis method for topology selection, based

on network diameter, average path length and visit ratios.

The maximum internode distance (diameter) of a network is the

greatest number of links a message must traverse to reach any

node along a shortest path (largest minimum path). Diameter is

independent of how paths are distributed through a network.

Mean internode distance is determined by first specifying for an

arbitrary pair of nodes their probability of exchanging a message

(routing distribution), then computing a sum of path lengths

weighted by cumulative exchange probabilities (from unit length

up to the network diameter). More simply put, this is an average

path length (number of links a typical message visits).

Closed-form solutions for the mean internode distance exist for

at least three different message routing distributions in a

symmetric network. (Symmetric networks are self-isomorphic,

i.e., a given node of the graph maps onto any other node. Non-

symmetric networks are discussed in [Reed87b]).

A uniform distribution of message routing, where the probability

of node i sending a message to node j is the same for all i and

j, yields a likely upper bound on mean internode distance for a

given topology. A second distribution assumes that nodes in

close proximity (within a "sphere of locality") exchange messages

with high frequency. Destinations within a given radius of a

5-3



source receive messages with probability p, whereas more distant

nodes are targeted with probability 1-p. Iterative partial

differential equation solvers such as those which motivate

(Berger87] typically exhibit this kind of communication locality.

When the size of a locality approaches the network size, or the

probability of visiting a given locality is low, a third distri-

bution becomes useful. Decreasing probability message routing

assumes that a node transmits a message with decreasing prob-

ability to destinations at increasing distances. One such dis-

tribution computes probability weights as a locality parameter d

raised to the power I (path length) multiplied by a normalizing

function (of network diameter and the parameter d).

Mean internode distance alone does not completely determine node

and link utilization. One must also consider how often the aver-

age message crosses a given link or triggers computation at a

specific node. The "visit ratio" is the mean number of times a

node or link is visited by a single message. For symmetric net-

works which have the same message routing behavior at all nodes,

the visit ratio of a node is simply the reciprocal of the total

number of nodes, 1/N. For a network which contains only one kind

of link, the visit ratio for a link is the ratio of the mean

internode distance over the number of links.

Visit ratios provide bounds on the maximum rate of message trans-

fer (cf figures 2, 3 and 4 of (Reed87a]). Given information

about the relative speeds of -)rocessors and communication links,

they can also be used to find the most appropriate size of

subproblem (granularity). To prevent communication delays from

limiting che maximum computation rate, the ratio of computation

time to communication time for a message must be at least N times

the maximum link visit ratio. This explains the performance



motivation for a binary hypercube topology: the width of the

network is fixed, so only the number of links incident on each

node changes, and the optimal computation grain size is constant

for any size network.

5.2.2 Decomposition Strategy and Bandwidth Limits

fCvetanovic87] develops a model of a shared-memory multiple-

processor architecture to determine how several iterative

algorithms behave with respect to bandwidth, grain size, and

decomposition method (considered as a reciprocal function of

communication overhead). Slightly less attention is given to

pipelining and memory access.

The author considers decomposition onto N processors, which

yields processing times proportional to 1/N, together with three

functional dependencies for communication overhead, proportional

to 1/N, I/SQRT(N) and 1. The 1/N case represents a system whose

total communication requirement is independent of the number of

processors; the unitary case yields a communication requirement

which grows in proportion to the number of processors. The two

intervals considered together define a "decomposition group",

e.g., (N,N) is a group for which processing and communication are

each proportional to 1/N.

Interconnection bandwidth is taken to represent effects of topol-

ogy and memory allocation within a multistage network. Delay for

accessing local data is considered part of processing time,

whereas global access increases communication overhead. In

either case, shared memory is visible to all processors. The

author references examples of similar analysis with different

assumed processor architectures in her PhD dissertation

[Cvetanovic861.
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Table 1 of [Cvetanovic86] provides formulas for estimating

speedup that results from various combinations of decomposition

group, memory access method and communication pipelining. Three

quantities are required to compute an estimate: the number of

processors N, the average time to complete one computation Tp,

and the time needed to transfer a message through a network link

(neglecting channel contention) Tc.

(Cvetanovic86]'s results indicate that:

Where communication overhead can be distributed fully

among N processors, speedup increases with N for any

bandwidth except the worst case (single channel shared

among all N, with a single communication request per

cycle), for which speedup becomes the ratio Tp/Tc.

Where communication overhead cannot be decomposed at

all, speedup improves for small N to a maximum Tp/Tc

then falls gradually to zero (hence at some point

multi-processor performance becomes worse than that of

a uniprocessor).

Pipelining (overlapping intervals of communication and

processing) improves performance only for small N,

unless complete decomposition is possible (the (N,N)

group). If a computation is a mixture of parallel and

serial code segments, speedup becomes inversely propor-

tional to the proportion of time spent in the serial

code sections, for the best case bandwidth. For less

than optimal bandwidth or communication decomposition,

serial segments have diminishing importance to the time

complexity of speedup.
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An interconnection bandwidth limit can reduce speedup

from linear in N to a constant (independent of N), with

increasingly severe effects when communication cannot

be fully decomposed. If bandwidth is limited and the

algorithm selected does not permit effective decomposi-

tion of communication, granularity must be reduced

(computation must occur in bigger chunks) for perform-

ance improvement to occur.

The ratio Tp/Tc determines maximum speedup and the

optimal number of processors. When processors are much

faster than their communication network, decomposition

strategy and bandwidth limit have enormous effects.

When communication occurs faster than any required

processing, none of the factors considered by

[Cvetanovic 87] are of major importance to performance

analysis.

5.2.3 SPAN

SPAN (a Seedup Analyzer for Parallel Programs) [So87] is a tool

for estimating the algorithmic speedup of parallel FORTRAN pro-

grams running on a shared memory architecture. Algorithmic

speedup refers to the maximum performance that can be expected on

a parallel machine and thus does not include degradation due to

memory contention, necessary synchronization, etc. To avoid the

expense of instruction by instruction analysis, SPAN uses the

task as its unit of measurement. It is assumed that programs are

deterministic and that their execution does not depend on the

number of processors used. Tasks are identified from the

parallel constructs of the source code and a trace of their

sequential execution is obtained. A multiprocessing schedule is

then constructed for that trace and estimates of speedup are

based on this schedule.
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5.2.4 CPPP

CPPP (the Cedar Performance Prediction Package) (Abu-sufah85] is

a set of tools for predicting the performance of FORTRAN programs

on the Cedar Multiprocessor Supercomputer. It has two important

characteristics: it is hierarchical and it is modular.

CPPP is hierarchical in that it provides the user with a range of

levels of performance prediction, varying in accuracy and cost.

The first level is the least accurate and the least expensive.

It consists of performance estimates provided by the Paraphrase

compiler (the Illinois program restructurer). Paraphrase, like

SPAN, ignores the many sources of performance degradation to pro-

vide rough estimates of algorithmic timing, speedup and effi-

ciency. The second and third levels are based on simulation

tools. In each case, the user is allowed to specify the degree

of detail in the simulation and the set of statements that will

be simulated. At the second, intermediate level, simulation is

based on a simplified model of processors having both local and

global memories. At the third level, a detailed simulation of

processors, memory hierarchies and interconnection structures is

provided. This is the most accurate and most expensive level.

It provides numerous performance statistics such as total execu-

tion time, estimated speedup, the number of each type of opera-

tion perforn.-d, MIPS, MFLOPS, processor utilizations, etc.

CPPP is modular in the sense that all of its components - the

processor model, the memory model and the global interconnection

network model - are parameterized; the user can, for example,

choose between a crossbar and a banyan network or they could

determine the size of a switching element. This enables the user

co predict on performance on alternative Cedar designs as well as

on a variety of other architectures.
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5.3 TOOLS FOR PERFORMANCE TUNING

5.3.1 General Requirements

Because the interaction between algorithm and architecture is so

complex, it will be necessary to provide the user with support

for tuning performance.

This requires provision for observing performance and status

events at all levels, as well as some high-level representation

for information collected during development and at run-time

[Gregoretti86]. An infrastructure for observing, integrating and

presenting parallel program performance information must extract

both static and dynamic details.

Evaluating run-time performance involves separate policies for

hardware, the operating system kernel, programming language run-

time libraries, and the end-user application itself. Hardware

monitoring concerns basic processor speed, communications

throughput, cache performance and other memory contention, and

buss and peripheral contention. Kernel policy includes context

switching, communications and I/O buffering, memory management,

file system, process creation and deletion, and system functions.

Areas important at the language level are procedures, statement

blocks, and control constructs, especially for communication and

concurrency. The application level focuses on performance of a

specific (parallel) algorithm.

The sensor mechanism of the monitoring system collects informa-

tion at three levels of abstraction: detection, filtering and

notification. Sensors can be hardware, software or a mixture of

the two. A sensor must be non-intrusive (have minimum effect on

operation of the object being observed), but also capable of

accurately observing a desired quantity. The testbed described

in (Gregoretti86] uses hybrid sensors to monitor the operating
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system kernel and language syntax/run-time levels, resorting to

hardware sensors for monitoring data structures and the processor

itself.

Hardware sensors can be attached as part of an in-circuit

emulator (within the CPU), at CPU output pins, or as part of

communication channels with peripherals and other processors.

Instrumentation of the communication links usually provides the

best cost/performance compromise in a multiprocessor system.

Instrumentation supports three primitive operations: a) counting

of events and measurement of time intervals; b) data sampling;

and c) detection of events which span more than one processor.

The information collected is timestamped and stored into a FIFO

memory for subsequent analysis.

5.3.2 Multiprocessor Profiling

Measurement of actual dynamic program behavior is typically

achieved via interrupt-driven sampling (e.g., in uniprocessor

Unix implementations). This type of approach is less feasible in

multiprocessor environments, especially those which lack shared

memory. A high-precision per-process timer is one reasonable

substitute method [Carrington86].

Two time values are of interest: direct time in a routine, and

cumulative time spent in a routine and all others it invokes.

Collection of the second quantity also produces a graph of inter-

procedure calling relationships. Dynamic analysis collects this

data during execution of a target program, for subsequent reduc-

tion and presentation.

Standard System V Unix profiling counts the number of function

calls and samples the program counter to develop an execution
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time profile. Sampling usually occurs via a line frequency clock

interrupt (50 or 60 Hz). Use of faster sampling rates greatly

increases measurement overhead. 4.2 BSD Unix retains additional

information that permits construction of a dynamic call graph, in

which each directed arc connects a caller to some subordinate

routine.

Use of a separate hardware execution timer for each process

permits computation of cumulative time for each routine during

the measurement phase rather than during subsequent analysis.

This approach requires that both entry and exit from each

function be detected, to permit allocation of processor time to

the most recently executed routine.

Handling for a timer at function entry closely resembles the code

generated for profiling via interrupt-driven sampling. For func-

tion exit, special handling can be implemented with minimum

alteration of an existing compiler by allocating an extra Unix

stack frame at each function call (continuation). The counting

routine for function calls invoked prior to entry allocates a

supplemental stack frame, which is resumed after the target

function executes and exits. Only after profiling information

has been collected is the original caller resumed and the supple-

mental stack frame deallocated.

When profiling data are measured rather than sampled, there is no

need to correlate execution address ranges with function addres-

ses or to generate a call graph. Measurements are directly asso-

ciated with function addresses. One minor problem with this

approach is that time spent executing routines that are not being

profiled is allocated to the calling routine. Another is that

measurement can increase exe-.ution time from 20 to 40 percent (in

the implementation by [Carrington]'s author on an Elxsi proces-

sor). However, overhead cost is isolated to a single process and

profiling activity has no effect on behavior of the Unix kernel.
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5.3.3 Monitoring Loosely Coupled Multiple Processors

A distributed program is just a group of tasks cooperating to

achieve a common objective, perhaps distributed across several

processors. Two extreme cases have all processes running on the

same machine, or each process running on a separate machine.

Components of a distributed program compute and communicate.

The performance of a distributed program is not completely

described by paging activity or subroutine call frequencies of

its individual tasks (or the machines on which they run).

[Miller86] describes a distributed program monitoring system

under 4.2 BSD Unix which collects performance data for activities

that transcend machine boundaries.

Three factors contribute to increased complexity of performance

metrics for a distributed program. Asynchrony results from the

way components of a distributed program can execute with true

simultaneity, but at non-deterministic rates. This complicates

synchronization of the components. Further, distributed systems

lack a universal time base across all processors, which prevents

complete ordering of events in a computation. Finally, a finite

and non-deterministic delay intervenes in communication between

processors. Thus there is no way of obtaining an instantaneous

picture of the state of a computation, and actions which have

multiple preconditions cannot be accurately scheduled (and clocks

cannot be fully synchronized).

Events in the measurement model include process creation,

destruction, and execution; shipment, delivery and receipt of

messages; and communication paths. Their observation should

exhibit two features: transparency (the assumption that measure-

ment of events has no effect on their progress) and consistency

(the attempt to provide a view of computation at the same level

of detail perceived by the programmer).
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Performance measurement involves three stages: metering, filter-

ing and analysis. Metering collects raw measurement data from

the operating system. Filtering ignores part of the data and

transforms the rest. Analysis draws simple conclusions from the

data.

(Miller86]'s measurement tools trace system calls (in particular,

interprocess communication) as an indication of distributed pro-

gram activity. The tools are themselves structured as a distrib-

uted program with four components: metering, filtering, control

and analysis.

Metering functions tend to be built into an operating system ker-

nel, to improve accuracy of time stamping and reduce overhead

(avoids some context switching). Metering detects events in the

lives of tasks and forwards the measurements to a filter process.

The filter task selects events that meet certain criteria, sum-

marizes and stores them until the control task requests them.

Types of events which can be selected include initiation and

acceptance of a communication connection; transmission, polling,

and reception of messages; creation, reference or termination of

a 4.2 BSD communication "socket"; and task forking or termina-

tion.

Analysis routines interpret the traces created by the filter to

provide communication statistics, measures of the extent of

parallelism and other structural features of a computation.

Coordination of the measurement tool components has to be indi-

rect, since under 4.2 BSD process identifiers are local, i.e.,

meaningful only to the machine on which a task is running. (The

provision for direct control of remote processes would require
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substantial modification of the basic 4.2 BSD operating system

kernel.) A server process is created on each host in the dis-

tributed computation to carry out commands of control processes

which reside on other machines. These exchanges are structured

as remote procedure calls (except that, in the case of process

termination, the local server unilaterally informs any remote

controlling task).

As a side effect of indirect control, to meter a distributed

computation a user must have an account on every machine involved

in the computation.

5.3.4 PIE

PIE (the Program and Instrumentation Environment) [Ogle85] is a

complete programming environment. Two of its more interesting

components are a Modular Programming Metalanguage (MP) and a

Relationship System.

The language, MP, is used to specify a program as a set of

processes, frames, sensors and tasks. A process is a sequential

code segment. A frame is a mechanism for controlling access to

shared memory; it consists of an abstract data type together with

constraints (synchronization). A sensor is a monitoring device

inserted to detect and report the occurrence of a specific event

(for example, a task termination or the change of the value of a

variable). Sensors may be user-defined and may be enabled or

disabled dynamically. A task is a parallel operation composed of

processes and frames together with control information and the

specification of monitoring devices (determining, for example,

which sensors are to be enabled).
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The Relational Representation System, much like that of Poker,

provides different views of an integrated database containing all

of the known information - static and runtime - on a program.

This information is presented graphically; thus, for example a

programmer can display both his static task structure graph and

his runtime task structure tree which shows task creation and

termination over time.

5.3.5 ISSOS

ISSOS [Ogle85] is a testbed for high performance parallel

software that includes a programming environment, an operating

system and monitoring mechanisms as well as parallel and

distributed hardware. It is designed to provide the user with

the information needed to tune his programs. He can do this

statically by altering the program itself or dynamically by

adjusting to runtime conditions. Runtime adaptations might, for

example, include spawning an additional copy of a process

whenever its input queue reaches some threshold or turning off

sensors when system behavior appears to have stabilized. Our

attention here is focused on the monitoring mechanisms.

ISSOS provides both sensors (small code segments within either

the distributed operating system or the applications code itself)

and probes (code segments within the resident monitor on each

node having direct access to the address space of processes on

that node). Sensors and probes may be used to produce event

records either as histories (traces) or as samples (responses to

individual queries). Collected information is filtered to insure

that it meets the monitoring device specifications. To minimize

communication throughout the system, this filtering occurs at all

levels: within sensors, resident monitors and the central

monitor.
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APPENDIX A -- OBJECT ORIENTED PROGRAMMING

A.1 INTRODUCTION

In the object-oriented approach, a program is decomposed into

objects that communicate through messages. An object encapsu-

lates data and the operations on that data; operations are

invoked in response to incoming messages and result in outgoing

messages. This approach appears to be well suited for highly

parallel computation (Odijk87]. The decomposition into objects

provides a natural basis for parallelism and synchronization (on

messages). Since the objects themselves form the unit of paral-

lelism, the user controls granularity and can tailor different

parts of his program for different architectures. Objects do not

share data and, therefore, map in an obvious way onto the proces-

sors of an MIMD machine. The object-oriented approach produces

well-structured and robust programs and facilitates the team

designs and software engineering practices that will be needed to

program significant applications (Odijk87].

Object-oriented programming is primarily a data abstraction tech-

nique, although it elaborates this technique with the notion of

"inheritance." In addition, it provides a model of computation

in which data and processing are contained in "objects" that

communicate by sending messages. These objects are good candi-

dates for distribution among nodes of a distributed system. They

are also good candidates for internal concurrency and for special

implementations that make use of specialized parallel hardware.

A-1



In terms of programming support, object-oriented programming will

need many of the tools discussed previously.

Programming Language Support. The semantics of object-

oriented programming languages must be expanded to

include parallelism. The obvious approach of placing

each object on a separate processor is not sufficient

because synchronous message transmission (where the

sender waits for a response) will serialize execution.

The alternatives are to (1) allow asynchronous messages

or, (2) permit objects to initiate and maintain activi-

ties of their own. This second approach has been fol-

lowed in POOL (Parallel Object-Oriented Language)

[Odijk87] which is being developed as part of the DOOM

project. (The DOOM (Decentralized Object-Oriented

Machine) Project is a coordinated effort to use the

object-oriented approach with massive parallelism. An

architecture, a parallel programming language and a

number of significant applications programs are being

developed.)

Mapping. Because architectures have limited connectiv-

ity, the placement of objects within the system will

affect performance. Mapping assistance such as that

provided by Prep-P is useful in determining the orig-

inal layout, but dynamic mapping and load balancing

techniques will be necessary. (Dynamic garbage collec-

tion to remove objects which are no longer referenced

will also be essential.)

Performance Prediction. Existing performance predic-

tion tools could be easily adapted to object-oriented

programming. In particular, Polylith (discussed above
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under program specification tools) would seem to have

most of the necessary features; if more detailed simu-

lations of hardware are required, a version of CPPP

(without the FORTRAN input or shared memory constructs)

could be developed.

Debugging for Correctness. The available tools for

debugging are quite limited but those that exist are of

use in the object-oriented domain. The In3tant Replay

technique, for example, would work well at least for

large grain objects (it would require extensive logging

for small grain objects). Animation of communication,

such as that found in Belvedere, is useful (although

the very regular patterns that Belvedere exploits will

occur only in very small grain parallelism). The

modeling aspects of Behavioral Abstraction (Bates83]

would be applicable.

Debugging for Performance. The systems that do exist,

such as PIE and ISSOS, would work well in an object-

oriented system.

The object-oriented approach is well suited to massive parallel-

ism and it could be used with many of the existing software

tools. The existing tools, however, are themselves quite lim-

ited. The effective use of massive parallelism will require a

substantial amount of development work in parallel programming

environments.

The remainder of this Appendix defines object-oriented program-

ming and discusses its value, both as a general tec~nique for

program development and as a method for i-corporating concurrency

within a program. We begin in Section A.2 by defining data
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abstraction and its role in the program development process.

Then in Section A.3 we discuss inheritance and what it adds to

program development. Next in Section A.4 we discuss the object-

oriented model of computation and how it can be used to make use

of concurrency. Finally, in Section 5 we discuss the support

provided for data abstraction and inheritance in some programming

languages.

A.2 DATA ABSTRACTION

Data abstraction is a means of abstracting from the way data

structures are implemented to the behavior they provide. Data

abstractions are particularly important because they hide compli-

cated things (data structures) that are highly likely to change

in the future. They permit the representation of data to be

changed locally without affecting programs that use the data.

They also simplify the structure of programs that use them

because they present a higher level interface. For example, they

reduce the number of procedure arguments, because abstract

objects are communicated instead of their representations.

This section is devoted to data abstraction: what it is, what it

buys in tne programming process, and how it exists in various

programming languages. We begin by discussing abstraction in

general, and then we move on to data abstraction; a more detailed

discussion of this material can be found in [Liskov87]. We con-

clude with a discussion of the role of abstraction in program

development.
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A.2.1 Abstraction and Procedures

The purpose of abstraction, in programming, is to separate 'use'

from 'implementation.' Procedures, the first programming

abstraction mechanisms, illustrate the purpose of such

mechanisms. A procedure implements some task or function that is

of use within a program. To accomplish this task, another part

of the program calls the procedure. In writing the program that

makes the call, the programmer cares only about what the

procedure does, not how it is implemented. Any implementation

that provides the needed function will do, provided that it

implements the function correctly and efficiently enough.

Typically, the procedure has parameters that allow it to be

tailored to the needs of a particular use. Some programming

languages allow only simple parameters, such as integers or

arrays. Others, such as Ada, allow more sophisticated parameters

such as procedures or types.

To get the full benefit of procedures, we must emphasize the

distinction between the abstraction and its implementation.

Since the implementation is not the same as the abstraction, we

need an independent description of the abstraction, called a

specification. Thus we have an abstraction that is defined by a

specification and implemented by a program module. Many modules

can implement the same abstraction, as is shown in Figure A-1.

Here abstraction A has a specification and n implementations.

SPEC

Figure A-l: Abstraction, Specification, and Implementations
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An implementation is correct provided it meets the specification.

Correctness can be proved mathematically if the specification is

written in a language with precise semantics; otherwise we estab-

lish correctness by informal reasoning or by the somewhat unsat-

isfactory technique of testing. Correct implementations differ

from one another in how they work, i.e., what algorithms they

use, and therefore they may have different performance. Any cor-

rect implementation is acceptable to the caller provided it meets

the caller's performance requirements. Note that correct imple-

mentations are not identical to one another. The whole point is

to allow implementations to differ, while ensuring that they

remain the same where this is important. The specification

describes what is important.

A.2.2 Data Abstraction

The above subsection discussed the virtues of abstraction in

general, and used procedural abstractions to illustrate the

idea. Procedures go quite a long way, but in the early seventies

some researchers realized that they were not enough [Parnas7l,

Parnas72, Liskov72]. These early papers proposed a new way of

organizing programs around the "connections" between modules.

The concept of data abstraction, or abstract data types, arose

from these ideas [Hoare72, Liskov74l.

A data abstraction provides the same benefits as procedures, but

for data. Recall that the major idea is to separate what an

abstraction is, from how it is implemented, so that implementa-

tions of the same abstraction can be substituted freely. An

implementation of a data object is concerned with how that object

is represented in the memory of a computer. This information is

called the representation, or rep for short. To allow changing

implementations without affecting users, we need a way of

changing the representation without having to change all using
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programs. This is achieved by (1) encapsulating the rep with a

set of operations that manipulate it, and (2) restricting using

programs so that they cannot manipulate the rep directly, but

instead must call the operations. Then, to implement or

reimplement the data abstraction, it is necessary to define the

rep and implement the operations in terms of it, but user code is

not affected by a change. Thus a data abstraction is

<objects, operations>

i.e., a set of objects that can be manipulated directly only by

operations in the set. An example of a data abstraction is the

integers: the objects are 1, 2, 3, and so on and there are oper-

ations to add two integers, to test them for equality, and so

on. Programs using integers manipulate them by their operations,

and are shielded from implementation details, such as a represen-

tation using 2's complement. Another example is strings, with

objects "a" and "xyz", and operations to select characters from

strings and to concatenate strings. A final example is sets of

integers, with objects [ ) (the empty set) and (3, 7), and oper-

ations to insert an element in a set, and to test whether an

integer is in a set.

Note that integers and strings are built-in data types in most

programming languages, while sets and other application-oriented

data abstractions, such as stacks and symbol tables, are not. To

allow such user-defined abstract data types to be implemented,

new linguistic mechanisms were needed as discussed further below.

Just as for procedures, the meaning of a data abstraction is

defined by a specification. A data abstraction can be imple-

mented in many different ways; an implementation is correct

provided it satisfies the specification. In addition, the users

of the data abstraction must be constrained so that they do not

access the rep directly, but instead use the operations. Encap-
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sulation is needed or the benefits of abstraction will be lost.

Encapsulation is related to the principle of "information hiding"

advocated by Parnas [Parnas]; it guarantees that information

about how a data abstraction is implemented is hidden from the

rest of the program.

Data abstractions are supported by linguistic mechanisms in

several languages. Two major variations are discussed below.

The first of these is CLU [Liskov77, Liskov84]. (The data

abstraction mechanism in Ada, discussed in Section A.5.4 borrows

heavily from CLU's mechanism.) CLU provides a mechanism called a

cluster for implementing an abstract type. A template for a

cluster is shown in Figure A-2. The header identifies the data

type being implemented and also lists the operations of the type;

it serves to identify what procedure definitions inside the

cluster can be called from the outside. The "rep =" line defines

how objects of the type are represented; in the example, we are

implementing sets as linked lists. The rest of the cluster

consists of procedures. There must be a procedure for each

operation, and in addition, there can be some procedures that can

be used only inside the cluster.

int set = cluster is create, insert, is-in, size,

rep = int_list

create = proc ...

insert = proc ...

end int set

Figure A-2: Template of CLU cluster
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In SmallTalk (Goldberg83], data abstractions are implemented by

classes. A class implements a data abstraction similarly to a

cluster. Instead of the "rep =" line, the rep is described by a

sequence of variable declarations; these are the instance vari-

ables. The remainder of the class consists of methods, which are

procedure definitions. There is a method for each operation of

the data type implemented by the class. (There cannot be any

internal methods in SmallTalk classes because there is no way of

identifying what methods are available for outside use.) Methods

are called by "sending messages," which has essentially the same

effect as calling operations in CLU.

One important difference between CLU and SmallTalk in how they

enforce encapsulation. CLU enforces encapsulation with compile-

time type checking, while SmallTalk uses runtime type checking.

E.g., suppose s is an int_set, and consider the illegal call

x: int := car(s)

(Here car is an operation on lists that returns the first element

of the list.) In CLU, the call would be found to be illegal by

the compiler, since car expects a list argument, not a set. In

SmallTalk, the error would be found when the statement is exe-

cuted at runtime.

Compile-time checking is superior for real-time projects for two

reasons: it allows a class of errors to be automatically elimi-

nated from a program, and it permits more efficient code to be

generated by a compiler. Thus SmallTalk is not a good language

for use in real-time proje.-s. Ada is a reasonable choice; it

has a data abstraction mechanism similar to CLU's and uses

compile-time checking.
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Other Object-oriented languages are for the most part even less

satisfactory than SmallTalk, e.g., [Bobrow86, Moon86], because

they do not enforce encapsulation at all. It is true that in the

absence of language support, encapsulation can be guaranteed by

manual procedures such as code reading, but these techniques are

error prone. In essence, languages that enforce encapsulation by

either compile-time or runtime checking guarantee an important

property of programs, which can be relied on with confidence and

without the need to read any code at all. Runtime checking is

less satisfactory than compile-time checking because violations

of encapsulation are found later. Languages without checking

provide no guarantees, which means that programmers must read

lots of code to be sure that encapsulation holds. Note that

although things may be somewhat manageable for a newly-imple-

mented program, they will degrade rapidly as modifications are

made.

A.2.3 Benefits of Abstraction

Abstraction provides locality within a large program. Locality

allows a program to be implemented, understood, or modified one

module at a time:

1. The implementer of a module knows what is needed

because this is described in the specification. There-

fore, he or she need not interact with programmers of

modules that use this abstraction, or at least the

interactions can be limited.

2. Similarly, the implementer of a using module knows what

to expect, namely, the behavior described by the speci-

fication.
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3. Only local reasoning is needed to determine what a pro-

gram does and whether it does the right thing. The

program is studied one module at a time. In each case

we are concerned with whether the module does what it

is supposed to do; that is, does its implementation

satisfy its specification. We can limit our attention

to just that module and ignore both modules that use it

("consumers") and modules that it uses ("suppliers").

Consumers can be ignored because they depend only on

the specification of this module, not on its code.

Suppliers are ignored by reasoning about what they do

using their specifications instead of their code.

There is a tremendous saving of effort in this way

because specifications are much smaller than programs.

For example, if we had to look at the code of a called

module, we would be concerned not only with its code,

but also with the code of any modules it used, and so

on.

4. Finally, program modification can be done module by

module. If a particular abstraction needs to be reim-

plemented (to provide better performance or correct an

error or provide extended facilities), the old imple-

menting module can be replaced by the new without

affecting using modules.

Note that both specifications and encapsulation are critical to

locality. Specifications allow separation between modules by

serving as a contract between consumers and supplier, allowing

each to work independently. Encapsulation ensures that modules

are really independent, so that it is safe to concentrate on just

the module at hand. For example, encapsulation ensures that a

module can be reimplemented without looking at the code of other

modules.
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Locality provides a firm basis for fast prototyping. Typically

there is a tradeoff between the performance of an algorithm and

the speed with which it is designed and implemented. The initial

implementation can be a simple one that performs poorly. Later

it can be replaced by another implementation with better perform-

ance. Provided both implementations are correct, the calling

program's correctness will be unaffected by the change.

Another use of locality is to encapsulate potential modifica-

tions. For example, suppose we want a program to run on differ-

ent machines. We can accomplish this by inventing abstractions

that hide the differences between machines, so that to move the

program to a different machine, only those abstractions need be

reimplemented. A good design principle is to think about

expected modifications and organize the design by using abstrac-

tions that encapsulate the changes.

The benefits of locality are particularly evident in data

abstractions. Data structures are often complicated, and there-

fore the simpler abstract view provided by the specification

allows the rest of the program to be simpler. Also, changes to

storage structures are highly likely as programs evolve. The

effects of such changes can be minimized by encapsulating them

inside data abstractions.

A.3 INHERITANCE

The previous section discussed data abstraction and its benefits

in program development. Data abstraction is a powerful tool in

its own right. Certain uses of inheritnrice can enhance this

tool. Therefore, we now go on to discuss inheritance and what

these uses are. We begin by talking about what it means to

construct a program using inheritance. Next we discuss two major
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uses of inheritance, only one of which (subtyping) is of interest

in programming methodology. Finally, we discuss how the subtype

hierarchy can help in program development.

A.3.1 Class Hierarchy

In a language with inheritance, a data abstraction can be imple-

mented in several pieces that are related to one another.

Although various languages provide different mechanisms for put-

ting the pieces together, they are all fairly similar. Thus we

can illustrate them by examining a single mechanism, the subclass

inheritance mechanism in SmallTalk.

In SmallTalk, a class can be declared to be a subclass of another

class (or classes); such a class is its superclass. To under-

stand what a subclass does, we need to understand what code

results from such a definition. For example, if we were to

reason about the correctness of a subclass, we would need to look

at this (resulting) code.

From the point of view of the resulting code, saying that one

class is a subclass of another is simply a shorthand notation for

building programs. The exact program that is constructed depends

on the rules of the language, e.g., such things as what to do if

two immediate superclasses have instance variables or operations

of the same name, and when methods of the subclass override meth-

ods of the superclass. The exact details of these rules are not

important for our discussion (although they clearly are important

if the language is to be sensible and useful). The point is that

the result is equivalent to directly implementing a class con-

taining the instance variables and methods that result from

applying the rules.
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An example is given in Figure A-3. Figure A-3a shows two clas-

ses, S and T, where S is a subclass of T. Here T has operations

01 and 02, and S, which is declared to be a subclass of T, pro-

vides a method for 01 and another method, 03. Also T has

instance variable V1 and S has a further instance variable V2.

Then the result in SmallTalk, as shown in Figure A-3b, is effec-

tively a class with two instance variables, V1 and V2 and three

operations, 01,..., 03, where the code of 02 is supplied by T,

and the code of the other two operations is supplied by S. It is

this combined code that must be understood, or modified if S is

reimplemented, unless S is restricted as discussed further below.

One problem with almost all inheritance mechanisms is that they

compromise data abstraction to an extent. In Object-oriented

languages, a data abstraction implementation has two classes of

users. First there are the "outsiders" who simply use the

objects. But in addition there are the "insiders". These are

the subclasses. Typically the rep is fully accessible to the

subclasses, and therefore the benefits of data abstraction can

disappear for them. In particular, if a subclass violates encap-

sulation, then to understand it we must examine the combined reps

of sub- and superclasses and the code of any superclass opera-

-ions that have not been overridden by subclass operations. When

encapsulation is not violated, the code is simpler. We need only

look at the rep of the subclass; reps of superclasses can be

ignored. Furthermore, we need not look at implementations of

operations inherited from the superclasses. Instead, we can

reason about them using their specifications.

If encapsulation is violated, we have the following disadvan-

tages:

1. Reasoning about the code is more complicated, since we

must consider the combined code. Thus we lose the ben-

efits of locality.
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2. If the superclass needs to be reimplemented, we must

consider all of its subclasses; if they violate encap-

sulation, we will need to reimplement them.

Class T

vl an instance var
ol a method
o2 another method

Class S subclass of T

v2 an instance variable
ol a reimplementation of T's ol
o3 a new method

(a) An example of inheritance.

Class S

vl
v2

ol this definition comes from S
o2 this definition comes from T
o3 this definition comes from S

(b) The resulting code.

Figure A-3. How Inheritance Works

3. If a subclass refers to any superclass of one of its super-

classes, this is another violation of encapsulation. It

means that we cannot change the hierarchy above the subclass

without possibly needing to change the subclass too. For

example, suppose class S refers directly to R, where R is a

superclass of T, and T is a superclass of S. Now suppose

that we reimplement T so that R is no longer its superclass.

In this case, S will no longer be meaningful.
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Finally, we note that if there is no enforcement of encapsulation

for superclasses, then even if a subclass does not violate the

superclass's encapsulation, we cannot rely on this when modifying

the superclass. Instead, it is necessary to at least examine all

subclasses. Thus we have the same situation here that we had for

data abstraction in languages that provided no mechanism for

enforcing encapsulation.

A.3.2 Implementation Hierarchy

The first way that inheritance is used is simply as a technique

for implementing data types that are similar to other existing

types. For example, suppose we want to implement integer sets,

with operations (among others) to tell whether an element is a

member of the set, and to determine the current size of the set.

Suppose further that a list data type has already been imple-

mented, and that it provides a member operation and a size opera-

tion, as well as a convenient wiay of representing the set. Then

we could implement set as a subclass of list. We would not need

to provide implementations for member and size. We would need to

implement other operations such as one that inserts a new element

into the set. We probably would like to suppress certain other

operations, such as car, to make them unavailable since they are

not meaningful for sets. (This can be done in SmallTalk by pro-

viding implementations in the subcall for the suppressed opera-

tions; suich an implemertation would signal an exception if

called.)

Another simple way to implement sets is to use list as the rep.

In this case, we would need to implement the size and member

operations; each of these would simply call the cctresponding

operation on lists. Writing down implententations for these two
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operations, even though the code is very simple, is more work

than not writing anything for them. On the other hand, we need

not do anything to take away undesirable operations such as car.

Of course, using inheritance we can violate encapsulation. This

ability can be useful, but is best viewed as being a fast way to

write programs by rewriting the code of existing programs. The

result is a completely separate piece of code, and changes to the

implementation of the superclass cannot be reflected easily into

the new code. For example, suppose we implement set by starting

from list and modifying its implementation using inheritance, and

then list is reimplemented and we want to use its new implementa-

tion in the set implementation. To do this we must reimplement

set.

Thus, inheritance is used for implementations in two different

ways. In one case, encapsulation is violated and its benefits

are lost. This ability to construct programs fast is probably

useful, but it does not require any special programming language

mechanisms. Instead, an interactive editing system that helps a

programmer produce a new program from an old one would be quite

satisfactory. (It would be useful to keep track of the relation-
ship between the two classes, so that if the superclass changes,

the programmer can be informed in case he or she wants to reim-

plement the subclass.) The other case preserves program struc-

ture, but has little if anything to offer over the alternative of

using one (abstract) type as the rep of another. Therefore, we

will not consider further using inheritance as an implementation

technique.
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A.3.3 Subtyping

The intuitive idea of a subtype is one whose objects provide all

the behavior of objects of another type (the supertype) plus

something extra. What is wanted here is something like the fol-

lowing substitution property: Consider any program P that is

defined in terms of type T. If type S can be uniformly substi-

tuted for type T in P without changing the behavior of P, then S

is a subtype of T. Of course this definition is vague, since

researchers in this area have not yet succeeded in capturing

precisely what is wanted. Research [Bruce86, Leavens88] is

underway to determine what the appropriate definition should be.

We are using the words "subtype" and "supertype" here to empha-

size that now we are talking about a semantic distinction. By

contrast, "subclass" and "superclass" are simply linguistic con-

cepts in programming languages that allow programs to be built in

a particular way. They can be used to implement subtypes, but

mentioned above, in other ways.

We begin with some examples of types that are not subtypes of one

another. First, a set is not a subtype of a list nor is the

reverse true. If the same element is added to a set twice, the

result is the same as if it had been added only once; for exam-

ple, in computing the size of the set, the element is counted

only once. However, if the same element is added twice to a

list, it occurs in the list twice. Thus a program expecting a

list might not work if passed a set. Similarly a program expect-

ing a set might not work if passed a list. Another example of

non-subtypes are stacks and queues. Stacks are LIFO; when an

element is removed from a stack, the last item added (pushed) is

removed. By contrast, queues are FIFO. A using program is

likely to notice the difference between these two types.
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Notice that the above examples ignored a simple difference

between the pairs of types, namely related operations. A subtype

must have all the operations of its supertype since otherwise the

using program could not use an operation it depends on. However,

simply having operations of the right names and signatures is not

enough. (An operation's signature defines the types of its input

and output arguments.) The operations must also do the same

things. For example, stacks and queues might have operations of

the same names, e.g., "add el" to push or enqueue, and "rem el"

to pop or dequeue, but they still are not subtypes of one another

because the meanings of the operations are different for the two

types.

Now we give some examples of subtype hierarchies. The first is

indexed collections, which have operations to access elements by

index. All subtypes have these operations too, but in addition,

each would provide extra operations. Examples of subtypes are

arrays, sequences, and indexed sets. The second example is

abstract devices, which unify a number of different kinds of

input and output devices. Particular devices might provide extra

operations. In this case, abstract device operations would be

device independent, while subtype operations would be device spe-

cific. For example, a printer would have modification operations

such as putchar but not reading operations such as get_char.

Another possibility is that abstract devices have all possible

operations, and thus all subtypes have the same set of opera-

tions. In this case, operations that not all real devices can do

must be defined in a general way that allows exceptions to be

signaled. For example,

getchar = proc (d: dev, c: char) signals (notpossible)

When this operations is called on a printer, it signals the

exception.
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A.3.4 Benefits of Subtypes

Subtypes are a useful adjunct to data abstraction in two ways.

First, data abstractions are usually developed incrementally as a

design progresses. In early stages of the design, we only know a

few operations and a part of the behavior. Such a stage of

design is shown in Figure A-4. The design is shown by means of a

"module dependency diagram," or "mdd" for short, which illus-

trates how a program is subdivided into modules. An mdd is a

graph with two kinds of nodes;w
represents a procedure abstraction, and

represents a data abstraction. Thus the figure shows two proce-

dures, P and Q, and one data abstraction, T. The nodes are con-

nected by arcs. An arc consisting of a single line means that

the abstraction whose node is at the head of the arc is imple-

mented in terms of the abstraction whose node is at the tail of

the arc. Thus P is implemented using Q (i.e., its code calls Q)

and T (i.e., its code uses objects of type T). (Recursion is

indicated by cycles in the graph. Thus if we expected the imple-

mentation of P to call P, there would be an arc from P to P.)

a

Figure A-4. The Start of a Design
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This figure represents an early stage of design, in which the

designer has thought about how to implement P and has invented Q

and T. At this point, some operations of T have been identified,

and the designer has decided that an object of type T will be

used to communicate between P and Q.

The next stage of design is to investigate how to implement Q.

(It would not make sense to look at T's implementation at this

point, because we do not know all its operations yet.) In stud-

ying Q we are likely to define additional operations for T. This

can be viewed as refining T to a subtype S as is shown in Figure

A-5. Here, an arc drawn as a double line means that the data

abstraction at the head is a supertype of the data abstraction at

the tail; double line arcs can only connect data abstractions.

P

T

Figure A-5. Later in the Design
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The kind of refinement illustrated in the figures may happen

several times; e.g., S in turn may have a subtype R, and so on.

Also, a single type may have several subtypes, representing the

needs of different subparts of the program.

It is better, for several reasons, to keep track of these dis-

tinctions as subtypes, rather than treat the group of types as a

single type. First, it can limit the effect of design errors.

For example, suppose further investigation indicates a problem

with S's interface. When a problem of this sort occurs, it is

necessary to look at every abstraction that uses the changed

abstraction. For the figure, this means we must look at Q.

However, provided T's interface is unaffected, we need not look

at P. If S and T had been treated as one type, then P would have

had to be examined too.

Another advantage of distinguishing the types is that it may help

in organizing the design rationale. The design rationale

describes the decisions made at particular points in the design,

and discusses why they were made and what alternatives exist. By

maintaining the hierarchy to represent the decisions as they are

made over time, we can avoid confusion and be more precise. If a

specification error is discovered later, we can identify pre-

cisely at what point in the design it occurred and what other

modules may be affected by it.

Finally, the distinctions may help during implementation. How-

ever, it may be that the hierarchy is not maintained in the

implementation. Frequently, the end of the design is really just

a single type, the last subtype invented. In other words, there

is no desire to actually implement the program by having a separ-

ate module for each supertype. Even so, however, the distinc-

tions remain useful after implementation, because the effects of

specification changes can still be localized, even if imple-

mentation changes cannot.
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The second use of subtypes is for "generics." The designer may

recognize that, in the system, there will be several data

abstractions that will be similar, but different. The differ-

ences represent different variants of the same general idea,

where the subtypes may all have the same set of operations, or

some of them may extend the supertype. An example is the

generalized abstract device mentioned earlier. To accommodate

generics in design, the designer introduces the supertype at the

time the whole set of types is conceived, and then introduces the

subtypes as they are needed later in design.

With generics, the intention is that objects belonging to the

different subtypes will actually be used by the program when it

runs. There may also be parts of the program that use the super-

type. For example, some parts of the program use the printer,

while others use the terminal; still other parts simply use

abstract devices. There are two reasons wlv such a structure is

worthwhile. First, each subtype, and the parts of the program

that use it, is independent of all other subtypes, and thus is

unaffected by errors in the other subtypes, or by errors in

additional new subtypes. Second, the part of the program that

uses the supertype is unaffected by (1) the addition and removal

of subtypes, (2) the differences between the subtypes and, (3)

the errors in subtype interfaces. For example, if a new subtype

of the abstract device supertype is added, then the part of the

program that uses either the other subtypes, or the supertype,

will be unaffected.

A subtype hierarchy arises in two different ways, as is illus-

trated in Figure A-6. In the first, T was introduced early in

the design and is used by P; P also uses Q and R, and they in

turn use subtypes S1 and S2. P only uses operations belonging to

T; Q and R use the additional operations of S1 and S2 , respec-
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tively. In the second example, T was introduced later in the

design, after types S1 and S2 had already been defined. The need

for T was recognized because of the desire to define a procedure

G that works on both S1 and S2 but depends only on some small

common part of these two types. For example, G might be a sort

routine that relies on its argument "collection" to allow it to

fetch elements, and relies on the element type itself to provide

a "<"1 operation. This second use of hierarchy is more problem-

atical than the first, since it is unlikely that S, and S2 have

exactly the operations required by G. If they do not, then at

the time T is introduced, it is likely that the interfaces of the

two subtypes will need to be changed, which may in turn cause

changes in other parts of the design.

MORE
p DESIGN

Q R Part G Part
using using
S2 Si

T T

S1 S

Figure A-6. Generics

In programs with these structures, we probably do want to use

subclasses as an implementation mechanism. One reason is that

this permits us to implement, just once, whatever can be done in

a subtype-independent way. The other reason is that, for
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languages that have inheritance, this will permit us to implement

the procedure that uses the supertype, e.g., P or G, in terms of
the supertype, and later to use it at runtime with an object of

one of the subtypes.
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A.3.5 Implementing Hierarchy with Inheritance

An inheritance mechanism can be used to implement a subtype hier-

archy in a fairly direct way. For example, there would be a

class to implement the supertype and another class to implement

each subtype. The class implementing a subtype would declare

that the supertype's class was its superclass.

However, there are some problems with this technique, so it must
be used with restraint. First, there will be trouble if the sub-

class accesses the rep of the superclass. As discussed earlier,
this violates encapsulation, and means that we cannot reimplement

the supertype without having to reimplement the subtype too.

The second problem concerns multiple implementations. It is

often useful to have multiple implementations of the same type,

for use in different programs or even in the same program. For
example, for some matrices we use a sparse representation, and

for others a nonsparse representation.

Languages with inheritance don't support the concept of multiple

implementations properly because they don't distinguish between

an abstraction and its implementation. Instead a class that
implements a type, such as matrix, is considered to be that

abstraction. Furthermore, if a second class that implements the

type were provided (e.g., providing the nonsparse implementa-
tion), it would eliminate the first one. A language like Ada is

in much better shape here because of the distinction it makes
between private and public parts of modules. Many private parts

can be associated with a single public part, i.e., there can be

many implementations of the same abstraction.
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Object-oriented languages allow users to simulate multiple imple-

mentations with inheritance. Each implementation is implemented

as a subclass of another class that implements the type. This

latter class would probably be "virtual", i.e., it would not

really contain any code, but would stand as a place holder in the

hierarchy. For example, there would be a "virtual" class imple-

menting matrices, and subclasses implementing sparse and non-

sparse matrices.

Using inheritance in this way allows us to have several imple-

mentations of the same type in use within the same program, but

it does interfere with type hierarchy. For example, suppose we

invent a real subtype of matrices called "extended matrices." We

would like to implement extended matrices with a class that

inherits from matrices rather than from a particular implementa-

tion of matrices, but this is not possible. Instead, the

extended matrices class must explicitly state in its program text

that it is a subclass of sparse or nonsparse matrices.

The problem arises directly from the lack of distinction between

a type and its implementations. What we really want is two types

(matrix and extended matrix), one of which is a subtype of the

other. Furthermore, each type can have several implementations,

and the implementations of the subtype should be combinable with

those of the supertype in various ways.

A.3.6 Remarks

We have shown that subtype hierarchy enhances data abstraction in

two main ways: by allowing the capture of a finer grain of design

information, and by supporting generics. There is one other way

that hierarchy is sometimes useful, and this is to aid in the

organization of a type library.
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It has long been recognized that programming is more effective if

it can be done in a context that encourages the reuse of program

modules implemented by others. However, for such a context to be

usable, it must be possible to navigate it easily to determine
whether the desired modules exist. Hierarchy is useful as a way

of organizing a program library to make searching easier, espe-

cially when combined with the kind of browsing tools present,

e.g., in the SmallTalk environment.

Hierarchy allows "related" types to be grouped together. Thus,

if a user wants a particular kind of "collection" abstraction,

there is a good chance that the desired one, if it exists at all,

can be found with the other collections. The hierarchy in use is

either a subtype hierarchy, or almost a subtype hierarchy (i.e.,

a subtype differs from an extension of the supertype in a fairly

minor way). The point is that types are grouped based on their

behavior rather than how they are used to implement one another.

The search for collections in general, or numeric types, or what-

ever, is aided by two things. The first, is considering the

entire library as growing from a single root or roots, and pro-

viding a browsing tool that allows the user to move around in the

hierarchy. The second, is a wise choice of names for the major

categories, so that a user can recognize that "collection" is the

part of the hierarchy of interest.

Using hierarchy as a way of organizing a library is a good idea,

but need not be coupled with a subclass mechanism in a program-

ming language. Instead, the notion of related types could be

supported by an interactive system that supports construction and

browsing of the library.
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A.4 OBJECTS AND PARALLELISM

In the preceding sections we have talked about how objects can be

used to make program development more effective. Now we go on to

consider how they are useful as a model of computation that sup-

ports distributed and parallel programming. We consider distri-

bution and concurrency together because they are closely related.

For example, we may want to position a part of a program at a

particular computer node in a network so it can truly run in

parallel with other parts, or so that it can take advantage of

special hardware at that node.

An object is an entity that consists of both data and code. The

data is the rep of the object; the code implements the object's

operations. With encapsulation we know furthermore that it is

not possible for the code of one object to access the rep of some

other object directly.

Such an object is a good candidate to locate, as a unit, to some

node in a distributed network. Since its code accesses its data,

it is efficient to locate both code and data at the same place.

Furthermore, the object's node can be different from the nodes

where its users reside, since they cannot access its data.

Instead they must call its operations, and such calls can be

implemented by sending call messages over a network, and later

sending back reply messages. Provided the programmer is careful

in how he or she designs the system, such an organization can

work efficiently. Most likely the objects are relatively large

and communicate with one another relatively infrequently.

Obje.s are also a good candidate for concurrency. Both specifi-

cations and encapsulation are critical here. Specifications give

freedom to implementors, while shielding users from details.
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Thus, an implementor can provide a highly concurrent implementa-

tion; as long as it meets the specification, the user will be

satisfied. Furthermore, to understand the using program, we need

only consider the specifications and need not be concerned with

what is probably a very complex implementation. The effect of

this complexity is localized.

Encapsulation is critical because it means that the implementor

need not worry about interference from other parts of the pro-

gram. Concurrent programs can be very difficult to understand,

but this difficulty is greatly reduced if the reasoning is

local. Then, only the code written for that object need be con-

sidered. Therefore, the invariants that are the basis for why a

particular implementation works can be relied on with confidence.

Finally, objects are often a rich source of concurrency. Speci-

fications typically say as little as possible, thus allowing

freedom for the implementor. This freedom translates into an

opportunity for applying concurrency to the implementation.

The desire for distribution and concurrency impose a number of

requirements on a programming language. These are discussed

below.

1. In implementing a concurrent object, it is necessary to

write a concurrent program. This implies that the pro-

gramming language provide a facility for having many

processes running inside the object at the same time.

For example, it might provide a construct that allows

several sub-processes to be started, such as:

A-30



co-enter

SI

S2

end

Here each statement Si runs as a separate process; the

co-enter terminates when all are finished, or there may

be a way of terminating it earlier.

One possibility is simply an asynchronous process fork.

In this case, the process doing the fork and the new

process run concurrently, and the forking process can

determine when the new process is done by doing a join.

A particularly elegant form of forking is the "future"

mechanism of Multilisp [Halstead85] or the "promise"

mechanism of Argus [Liskov87]. Here, a procedure call

creates a process to run the call and then returns
immediately, returning an object whose value is not yet

filled in. When the forked procedure returns, the

value is filled in. When the forking process needs the
value, it "claims" it, waiting if necessary.

2. If one object makes a remote call to another object, it

should not be blocked until the call returns. This

requirement can be satisfied by the concurrency mechan-

isms mentioned above; the promise mechanism is particu-

larly useful here. It can also be satisfied by using a

lower level form of remote call in whic)i the caller

explicitly sends a message, and later explicitly waits

for the reply.
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3. An object needs the ability to run more than one remote

call at once. At the least, it needs to be able to

accept a new call if it is unable to complete the cur-

rent one (e.g., because a needed resource is locked) or

if the current call is delayed while some nested remote

call runs. In the former case, accepting a new call

may be necessary to avoid deadlock (e.g., the new call

unlocks the resource needed by the blocked call.) In

the latter case, accepting a new call can prevent the

object from becoming a bottleneck. The best way to

satisfy this requirement is to allow each call to start

up a process when it arrives. An alternative technique

is explicit task swapping: the called object queues the

current call for later processing and proceeds to a new

call. This technique works but is less satisfactory

because the code of the called object is much more

complicated. Also, it assumes the called object runs

on a single processor, which may not be the case.

4. The programmer needs a way to control the scheduling of

processes. In the case of a program that must support

hard real-time constraints, some form of deadline

scheduling is needed. In addition, it may be necessary

to have some priority mechanism to distinguish between
processes without hard deadlines, since there may be

more processes than available processors.

5. The programmer needs a way to control what a remote

object consists of. Typically, the rep of an object

consists of other objects, e.g., an array is used to
represent a set. For the object to run well, however,

it is generally necessary for most of the representing

objects to reside at its node. Otherwise, every access
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to the rep will require a remote call, which can lead

to a major performance degradation, since remote calls

today are ten to one hundred times slower than local

calls. On the other hand, some representing objects

may need to be remote, for the reasons mentioned above.

Therefore, the programmer needs a way of controlling

which representing objects are local and which are

remote.

6. The programmer needs to control where an object (and

its representing components) resides in a network. The

object may be positioned at a location to take advan-

tage of special hardware, or it may be positioned to be

near its users.

7. There must be a way of moving objects without requiring

changes to user code. An object might be moved because

performance analysis indicates a better place for it to

reside, or to balance load at various locations, or to

take advantage of new hardware in the network. When

such a move happens, the code of using programs should

not need to change. Satisfying this requirement

implies that the way users make remote calls must be

location-independent. It also implies that there is a

way to map object names to locations at runtime.

8. The runtime system of the programming language needs to

be extensible, so that programs can take advantage of

and adapt to changes in hardware configurations and

applications requirements. In particular, it must be

possible to create new objects, and also to remove

objects.
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9. It is desirable to be able to replace a group of

objects (possibly consisting of a single object) by a

new group that provides the same behavior in a differ-

ent way, i.e., the new group is a reimplementation of
the old. The replacement should be done in a way that

results in no loss of information so that users of the

original group can continue using the new one without

problems. In addition, the replacement should cause

very little delay and certainly should not require

bringing down the entire system.

Many of the requirements above are satisfied by at least some

languages, e.g., Argus [Liskov83] and, to a large extent, Ada.

However, some require research to determine the right solutions.

This is especially true for the scheduling and replacement

requirements. A partial solution to the latter is described in

(Bloom83].

A.5 IMPLEMENTATION LANGUAGES

This section addresses the issue of what programming language

would be suitable for use in the kinds of projects of interest to

us. We assume here that type hierarchy will be desirable at

least occasionally. In addition, however, the language must

satisfy our concurrency and distribution goals. We conclude that

object-oriented languages such as SmallTalk are not suitable for

our use. We then discuss the suitability of Ada. Ada meets many

of our concurrency goals, but has no inheritance mechanism, so we

go on to discuss how to overcome this weakness when subtypes are

needed.
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A.5.1 Object-Oriented Languages

Most, if not all, object-oriented languages do not support our

concurrency and distribution requirements. For example, concur-
rent SmallTalk [Yokote86] fails every one of our requirements.
Other object-oriented languages may do better here, e.g., Actors

(Hewitt79], but they are research vehicles unsuitable for use in

our projects.

An object-oriented language such as SmallTalk does provide direct
support for inheritance. However, SmallTalk's mechanism is defi-

cient in two important ways. First, it enforces data abstraction
only with runtime type-checking. This is unsatisfactory for pro-
duction programs for reasons discussed earlier in the paper.

Second, SmallTalk does not enforce encapsulation completely,
since subclasses can violate the encapsulation of their super-
classes.

The inheritance mechanisms of most other object-oriented lan-
guages are even less satisfactory than SmallTalk because they do
not enforce encapsulation at all. One exception is Trellis/Owl

[Shaffert86]. This is a strongly typed, Object-oriented language
developed by Digital. However, it is still an experimental lan-

guage and is probably not appropriate for use outside of Digital.

Another problem with SmallTalk is that it has only classes and no
procedure mechanism. (Other object-oriented languages do not

necessarily have this problem.) There is no way to implement
directly a procedural abstraction that accomplishes some task.
Instead such a procedure must be turned into a psuedo-object.
Another related problem is that methods are not "first class"
objects, and in particular, they cannot be passed as arguments

themselves, an ability that is sometimes needed. Procedures are
an important kind of abstraction and a programming language

should support them directly.
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A.5.2 Ada

Ada supports most of our requirements for concurrency and distri-

bution. It also supports data abstraction. Furthermore, it is
defined for use in the development of production programs.

Therefore, it seems an appropriate choice for us. It is true

that Ada does not support type hierarchy. However, it is pos-

sible to simulate type hierarchy as explained further below.

The unit of distribution in Ada is the task. This is an object

that provides a group of operations for others to use through the
"entry" mechanism. Tasks are somewhat limited in their support
for concurrent execution of entry calls, as discussed in
(Liskov86b], but are generally satisfactory, and meet many of the

other goals.

A task contains data that correspond to its representation. Some

of these data may be other tasks, but most are objects local to

the task. The representation of a task is not encapsulated, so

encapsulation here must be achieved through programming conven-
tions. The local data of the task, however, can be abstract

objects whose reps are encapsulated. These abstract types are
defined by using the Ada's private type mechanism.

We do not believe that the absence of support for hierarchy in

Ada is an overwhelming disadvantage. Language support for type
hierarchy is needed only for programs in which objects of differ-

ent subtypes exist at runtime, and furthermore where there are
parts of the program that use objects of various subtypes as if
they belong to the supertype. We believe such cases are rela-

tively rare. Nevertheless, they do occur occasionally. Some-

times the part of the program that uses the supertype can be
implemented using Ada's generic mechanism to implement polymor-

phic abstractions. Otherwise, type hierarchy must be simulated.

In the remainder of this section, we discuss when polymorphic
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abstractions are adequate, how to implement types with multiple

representations, and how to implement a subtype hierarchy.

Finally, we discuss some requirements for the program development

environment.

A.5.3 Polymorphic Abstractions

In this section we discuss an alternative to subclasses as a way

of achieving some of the benefits of hierarchy. This mechanism

is the polymorphic abstraction. A polymorphic abstraction is one

that can be parameterized by types.

For example, consider a procedure that does sorting. In many

languages, such a procedure would be implemented to work on an

array of integers; later, if we needed to sort an array of

strings, another procedure would be needed. This is unfortu-

nate. The idea of sorting is independent of the particular type

of element in the array, provided that it is possible to compare

the elements to determine which ones are smaller than which other

ones. We ought to be able to implement one sort procedure that

works for all such types.

Some languages allow such procedures to be implemented by allow-

ing procedures to be parameterized by types. Here is the header

of a sort procedure in CLU:

sort = proc [T: type] (a: array[T])

where T has lt: proctype (T, T) returns (bool)

This header constrains parameter T to be a type with an operation

named "lt" with the indicated signature; a specification of sort

would explain how lt must behave. We could even define a more

polymorphic sort routine in CLU that would work for all collec-

tions that are "array-like", i.e., whose elements can be fetched
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and stored by index.

The sort procedure is similar to the generics discussed earlier.

There we defined a hierarchy in which the supertype T was

"sortable" and the sort routine took as an argument an array of

T. Thus polymorphic procedures allow us to group types that have

operations and behavior in common, and in this way we approximate

the effect of hierarchy. In effect, the polymorphic procedure

operates on the supertype, but without a need to define the

supertype by hierarchy.

There are cases in which using polymorphic procedures is superior

to using hierarchy. In particular, polymorphism allows us to

relate types without having to maintain a hierarchy. If hierar-

chy is used for every such procedure, the type universe can

become very complicated, and it will be troublesome to consider,

for each new type, what all the supertypes are. Secondly, if all

parts of the hierarchy are not done properly in the first place,

it can be difficult to fix things up after the fact. For exam-

ple, suppose that a new generic G is invented after many types

already exist, and that G requires an operation that was not

thought of before. Then in order to use G with some existing

type S, it is necessary to add hierarchy above S zo it will have

the operation. (It is undesirable to modify S itself, since this

increases the code that must be changed when S is implemented or

reimplemented.) For example, suppose G required two operations

01 and 02, and that we wanted to use G with two types S1 and S2 ,
and that neither of these types had these operations. Then we

would need to invent the hierarchy shown in Figure A-7. The idea

here is that the operations are implemented differently for the

two types, so they cannot both be implemented in T. Therefore, T

implements them for Sl and R implements them for S2 - (We avoid

implementing the operations inside the Si's because the modular-

ity is better if they are outside. Of course, implementing them

outside presupposes that they can be implemented using the sub-

type's operations.)
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There are even situations in which G cannot be made to work with

some type S without changing S's implementation. This happens

whenever S already has an operation of the required name, e.g.,

0i , but with different behavior. Polymorphic abstractions, as

defined in Ada, can avoid such problems.

R

Figure A-7: Adding Hierarchy
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A.5.4 Implementing Type Hierarchy in Ada

There are uses of type hierarchy that cannot be achieved through

polymorphic abstractions. The most important example is a data
structure that contains, as elements, objects of various sub-
types. For example, imagine a directory that maps strings to

abstract devices; the string "printer" might map to an abstract

printer, while the string "display" might map to a terminal.
Ideally, the directory would be of type map(T] where T is the

abstract display type. Such a structure is not possible in Ada
without simulation of type hierarchy.

There are two main ways to proceed. One is to store variant

objects in the directory, where the tag of the variant indicates
which subtype the particular element belongs to. Thus, the type

of t ie directory is map[V] where V is the variant type. This

solution is simple, and is probably the best one in some cases.
However, it has a major flaw: If a new subtype is added to the

system, it is necessary to find every program that uses the data

structure and change it. For example, we would need to modify
the implementation of the directory, and also every program that
uses the directory, since the type of the directory has changed.

Thus, a change in the type hierarchy requires modification of the

using code that really ought to be unaffected by the change.

The alternative solution has some implementation complexity but
avoids the problem. The idea is to implement the supertype as
well as the subtypes, and maintain the relationship between the

supertype and its subtypes at runtime within their code. In this

solution we really have a directory of type map[T]. If a new
subtype is added, the supertype code will need to be changed, but

code of programs that use the supertype will not. It is much
easier to remember to change the supertype in this case than to

find all places in user code.
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A method for implementing the hierarchy works as follows. The

technique provides encapsulation for the super- and subtype

implementations; for example, each might be implemented in its

own package. In addition, the subtypes are independent of one

another and are not affected by the addition of a new subtype;

only the supertype must change.

1. Recall that the rep of a subtype object contains both

its own rep and also the rep of a supertype object that

is created as part of creating it. We can simulate

this by having each subtype object refer to the super-

type object in its rep, and also having the supertype

object refer to the subtype object, as illustrated:

x

y S s REP PRESENT

Here x is an object of the supertype T, and y is an

object of subtype S. The rep of supertype object x is

a variant record; the tag of the variant indicates what

kind of subtype object is referenced. Furthermore, the

subtype object y's rep must be a variant that is either
"null" (indicating the reference to its supertype

object has not yet been stored) or "present," indicat-

ing that the reference has been stored.
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2. The supertype provides a creation operation per subtype

for creating the supertype object. For example, if

supertype T has subtypes Si and S2, then it has two

creation operations:

makeSi (Si, ... ) returns (T)

makeS2 (S2, ... ) returns (T)

Here "..." stands for other arguments that may be

needed to initialize the new supertype object. The

returned object refers to the subtype object passed as

an argument to the "make" operation and has the tag for

that subtype.

3. A new subtype object is created (by a creation opera-

tion of the subtype) as follows. First, the variant

record is created in the null state, and the subtype's

fields are filled in. Then the make S operation (where

S is the subtype's name) of the supertype is called to

obtain the supertype object. Finally, the subtype

object is modified to have the "present" tag and to

refer to the returned supertype object.

4. The subtype provides an operation to return its super-

type object:

get super (Si) returns (T)

This operation would be used, e.g., before storing the

abstract printer into the directory (since the direc-

tory contains objects of the supertype abstract

devices, rather than objects of the subtypes). The

supertype provides a similar ability, with one such

operation per subtype, e.g.,
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get_Sl (T) returns (SI) signals (wrong_type)

This operation would be used by a program that fetched

an object from a directory and wanted to use it accord-

ing to its subtype. Typically, such a program would

know what subtype the object was (e.g., it looked up

"printer"); the exception is signaled if it is mistaken

about this.

5. Each supertype operation that is redefined by subtypes

must check the subtype of the object passed in as an

argument, and call the operation provided by that sub-

type. Furthermore, if the supertype operation op that

really does something (i.e., it is not virtual), we

must provide another supertype operation, op hidden,

that can be called by subtypes when they need to run

the supertype operation.

It should be noted that these rules are simply an implementation

of what an inheritance mechanism does. For example, whenever a

subtype really calls on a supertype operation, a private way is

created for it to do this, similar to the ophidden approach

mentioned above.

Implementing types like this is not very attractive. However,

the transformations are all straightforward, so that it should be

possible to define a preprocessor that hides the details and in

essence appears to add hierarchy to Ada.
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A.5.5 Multiple Implementations of a Type

Ada already supports multiple implementations of a type in the

program development system, but it allows only a single implemen-

tation to be used within a single program. Sometimes it is use-

ful to have simultaneous implementations of the same type in use
within the same program. For example, we might want to use both

sparse and nonsparse implementations for matrices in this way.
This ability can also be provided by a mechanism similar to that

above. However, the problem is_ simpler because the various

implementations are not visible to users. Instead, all user

variables are of the type, e.g., of type matrix; thus there is no
need for operations that convert from the type to an implementa-

tion or vice versa. The one possible exception to this is when

objects are created; at this point we need to know what implemen-

tation to use. This ability can be created by binding when the

part of the program that uses a particular implementation is

compiled or linked.

As was the case above, there would be one implementation of the

supertype and one for each subtype. The difference is that all

calls by users would go to the supertype, which would then dis-

patch to the appropriate subtype operation. To permit this

dispatching, the rep of the supertype would have a variant part

identifying which subtype a particular object belonged to. The

rep would also have additional fields to store the rep of the

supertype.

Although the subtype implementations are independent, they may

need to be written with the knowledge that there are many of

them. This is true if the type has any "binary" operations,

i.e., operations taking in two (or more) arguments of the type.

An example of such an operation is adding two matrices. The
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problem is, if one matrix has the sparse representation and the

other has the nonsparse representation, what should be done?

(This is not a new problem; it arises in object-oriented lan-

guages all the time). One possibility is for the type to call

the operation belonging to implementation of the first argument.

This operation must access the second argument indirectly by

calling its operations. For example, suppose we add two matrices

ml and m2, and ml is sparse while m2 is not. Then the matrix add

operation would call the sparse add operation, which would access

its secQnd argument m2 by fetching each <i, j> element using the

fetch operation of the nonsparse implementation, rather than

looking directly at the rep of m2.

A.5.6 The Program Development Environment

In this section we discuss briefly some requirements on the pro-

gram development environment. These requirements are concerned

with providing the proper tradeoff between efficiency and per-

formance.

Using data abstraction can be expensive because of the extra

calls involved. For example, if set is implemented using a list,

then the size operation for set simply calls the size operation

for list. Keeping the call in there aids flexibility: if list is

reimplemented we can simply bind set to the new implementation

without necessarily recompiling it.

The performance of a data abstraction can be improved at the cost

of flexibility by straightforward optimization techniques. The

key technique is that of "inline substitution," which means that

the code of a called procedure is placed inline at the point of

the call. For example, the set size operation would contain
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within it the code of the list size operation. In this way the

extra procedure call is avoided. Once inline substitution has
been done, other optimizations that cross abstraction boundaries,

such as dead or redundant code elimination, are also possible,
which can further improve performance. Of course, when the
inline optimization is done, we lose the ability to change the

implementation of the used type without changing the implementa-

tion of the using code.

Similar kinds of optimizations can be done in object-oriented
languages. For example, if S inherits from T and in particular

operation o comes from T, then there are two possible implementa-

tion techniques. The first is to look for 0 at runtime. When a

call to 0 is made, the runtime system first checks the operations

explicitly provided for S to see if 0 is there; if not it looks
in S's superclass T. This technique is inefficient but flexible,

since it means we can reimplement T (assuming S did not violate

encapsulation) and later use it as part of S without having to
change S's code at all. The alternative technique is to provide

code for S that includes T's operations such as 0. This avoids
the search at runtime, but means S must be recompiled to make use

of the new implementation of T.

At certain points in the lifetime of a program, flexibility is

the most important goal, e.g., during debugging. Later, when the

program enters production, good performance may become the over-

riding factor. What is needed from a program development system

is the ability to support both needs, but under programmer con-
trol. In particular, it should be possible to compile a call

using either inline substitution or not, depending on what the
programmer wants.
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If the program development system does not provide inline substi-

tution, then programmers in need of improved performance will

start to do it by hand. This is not a good way to proceed, how-

ever, because later when modifications need to be made, the
abstraction boundaries that would have made modification easy

have disappeared. By contrast, when the system does the work,

the modifications are made to just the affected abstractions.

Later, inline substitution and other optimizations can be done

again to achieve needed performance.

The above discussion has focused on how modifications in code can

be accommodated during stages of program development. However,

the ease of producing the new code is only part of what is

needed. We also need to install the new code in the running

program. This is easy to do if we stop the running program,

replace it with the new implementation, and start it again,

provided that the program does not have any objects, e.g., in

files, that make use of older representations. Dealing with such

objects requires more sophisticated techniques.
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APPENDIX B -- MULTIPROCESSOR OPERATING SYSTEM ISSUES

This appendix discusses a variety of issues related to multiproc-

essor operating systems. These issues all have some bearing on

the operating environment for parallel programs.

B.1 VARIATIONS ON MULTIPROCESSOR UNIX

B.1.1 General Considerations

Two choices of strategy are possible for construction of a multi-

processor operating system: a) design from scratch, or b) adapt

existing code for new hardware [Janssens86]. The later approach

takes advantage of software available for the existing Operating

System (O/S), often a larger concern than optimal use of special

hardware features.

Users want to preserve applications already running under Unix,

or to migrate to Unix to avoid the need to rewrite again in the

future. Over the past five years, fultiprocessing versions of

Unix have been developed by numerous universities and computer

vendors [Hurst87I. The hardware configuration most often

selected is a tightly coupled multiprocessor system with shared

memory.

Unix is constructed as nested layers of services, which are

thought of as concentric shells. Conceptually, each layer calls

only the services offered by the next lower level (in practice,

minor violations of this convention occur for efficiency). The
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layer responsible for multitasking, i.e., interleaved scheduling

of user programs is called the kernel. A kernel directly con-

trols the hardware of its host, managing I/O, interprocess com-

munication and the file system in addition to scheduling tasks.

An operating system is perceived by an end user as a command

interpreter and a collection of system functions. Portability of

existing software is enhanced if system service calling conven-

tions are unchanged between "different" operating systems. Unix

(and its derivatives) have a few features which cause problems

when adapting it to suit a multiprocessor environment

[Janssens86].

The essence of these problems is the protection mechanism

required to control access to shared resources during execution

of "critical sections" of instructions. Execution of critical

sections (in two or more competing processes) must be mutually

exclusive in time, to maintain consistency of shared variables,

in-core tables, disk files and the like.

In uniprocessor Unix implementations, resource competition exists

only among user processes. A process is defined to be an execu-

tion of a program (which may spawn more than a single task).

Distinction is made between "user mode," in which processes are

restricted from potentially system-crashing actions, and "kernel

mode" in which a process can do whatever the hardware permits.

Several processes can exist simultaneously in either user or ker-
nel mode, however, transfer of control between user processes is

random (beyond control of a user process), whereas a kernel pro-

cess can be replaced by another kernel process only at its own

request. Not even an interrupt causes a kernel process switch.

If a hardware interrupt occurs during execution of a kernel
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process, only interrupt processing can take place; calls to the

scheduler and transitions out of the interrupt are not allowed.
This complicates matters only slightly on a uniprocessor.

Two user processes can synchronize their access to a shared vari-

able by use of "lock" and "unlock" functions which ensure that
only one process at a time enters its critical section. In the

absence of interrupts, kernel processes require no explicit pro-
tection of their critical sections, since a kernel process can be
switched out only when it explicitly calls the scheduler.

A problem does arise on a uniprocessor when a variable is shared
between a kernel process and an interrupt handler. Interrupts

must be disabled before entering the critical section, and re-

enabled upon exiting from it. Despite this, mutual exclusion
remains only a minor annoyance so long as a kernel process does

not attempt to call the scheduler within a critical section.

Protection of a critical section that calls the scheduler in a

kernel process requires a complicated arrangement of flags and
busy-wait guard conditions, but is igain possible. However,
existing Unix protection mechanisms are not sufficient in a
configuration containing two or more independent processors.

With shared memory, concurrency at a hardware level permits two
kernel processes to test a flag roughly simultaneously, in which

case both might enter their critical sections at the same time.
Indivisibility of a kernel process makes detection of the begin-

ning of a critical section fairly easy (indeed, no special provi-

sions are required up to the point at which a scheduler call
occurs). Determining where a critical section ends can be much
harder, if not impossible, without explicit line-by-line review

of the operating system kernel source code.
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Adaptation of Unix to a multiprocessor environment requires

active detection of critical sections, rather than modification

of existing protection mechanisms. Review of kernel source code

is encumbered by a) its lack of structure, b) subtle differences

in superficially similar functions arising from optimizations, c)

nesting of critical sections (producing deadlock), and d) multi-

ple execution paths that return repeatedly to a given section of

kernel code.

Thus, implementation of a multiprocessing Unix requires one of

three approaches. The most direct simply examines every line of

code in the complete kernel, adding locks where needed. This

tends to focus attention on details rather than issues of global

design. A second solution requires that only a single processor

be allowed to execute kernel processes at any given time.

[Meyer75] is an early example of this approach. However, a

uniprocesso- Unix spends about half its time executing kernel

code, so this imposes a significant serialization constraint,

with corresponding loss of parallel performance.

A third approach is to throw away the existing kernel code and

start over. This requires significant development effort, but is

the approach taken in (Barak85] and (Emrath85]. A much less

drastic modification is possible with the asymmetric processor

configuration of [Tuyenman86].

B.1.2 MOS

[Barak85] describes a multiprocessor operating system that mimics

Unix, operational since 1983. A true distributed implementation,

MOS requires a symmetrical configuration of similar processors

(all PDP-11) connected via a fast local area network. The oper-
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ating system integrates the independent processors into a single

virtual machine, which permits process migration across hosts.

MOS replaces the entire Unix kernel with an equivalent one that

supports all (Version 7) system calls. Users need not be aware

of the existence of multiple processors or the LAN; the Unix pro-

cess interface is preserved. Dynamic configuration and replica-

tion of storage exploit hardware redundancy to increase system

availability. However, few provisions are made for fault toler-

ance apart from tracing a fault to its physical machine (and

subsequent testing in stand-alone mode).

Each machine in a MOS configuration runs an identical kernel that

provides the standard Unix environment. Control is decentral-

ized, with each machine making independent decisions and perform-

ing its own local housekeeping. Unnecessary communication is

avoided when accessing strictly local objects, but machines vali-

date incoming requests before servicing them. Granularity of

remote operations is coarse, so that objects cannot be left in a

locked or inconsistent state.

Tools exist to evacuate all processes from a given machine, when

it must be disconnected from the configuration. When a machine

crashes, minimal disruption of other processors ensues. Dynamic

load balancing is also supported via process migration.

Each individual object (e.g., file or directory) resides on

exactly one computer. The file system is implemented as several

disjoint trees, each of which constitutes a Unix file system

complete with root directory. These stubs are connected by a

"super-root" directory that assigns symbolic names to each of the

roots. Each machine keeps its own copy of the super-root (which

must be kept identical with the others, but not by the kernel).
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The kernel is structured as an object manager, where an object is

any system entity having an independent existence (i.e., proces-

ses, files, pipes, terminals, memory segments, disks, etc).

Objects reside near their physical manifestations, and are mostly

passive. The sole exceptions to this in MOS are processes, the

only objects that can change the state of other objects. All

objects visible to a user can be operated on by remote processes.

The MOS kernel is composed of three subsystems: lower kernel,

linker and upper kernel. The lower kernel implements objects

that reside in a given machine, and is the only part of the

kernel with full knowledge of local objects. It multiplexes

processor time and memory among processes and provides synchron-

ization and other services to the upper kernel.

The linker allows the upper kernel to call procedures in the

lower kernel of any machine in a MOS configuration. The linker

serves as a messenger. The upper kernel knows where objects

reside, but calls the linker to dispatch requests. The linker is

the only subsystem with current knowledge of the network config-

uration, and is the only part sensitive to machine ID.

The upper kernel is a logical extension of a user's program. Its

duty is to service system calls and maintain the process environ-

ment. Its address space is an extension of the user's, and serv-

ices only the user's program. A user program can freely change

its own contents, but must call the upper kernel to act on

external system-wide objects. A process running at this level

can be transferred to another physical MOS processor and resumed

without any side-effect (hence migration becomes trivial).

MOS makes a cluster of loosely coupled independent computers

behave as though it were a uniprocessor Unix system. Internal

structure of the kernel is modular, with a high degree of infor-

mation hiding and hierarchical organization.
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B.1.3 Asymmetric Power for Real-Time Data Reduction

Tuyenman and Hertzberger [Tuyenman86] discuss a distributed real-

time operating system that runs on an embedded multiprocessor.
Fados is based on an asymmetric host-target configuration with

communication between arbitrary processes on host and target
machines. The FAMP system is used to partially reduce data in
real time for high-energy physics experiments on a time scale

from a few tenths of a millisecond to about ten msec. The par-
tial analysis determines only whether data should be preserved

for more thorough examination.

Both host and target processors are of the Motorola 68000 fam-
ily. This permits object-code compatibility between host and
target, even though progi-m development is supported only on the
host. Time-sharing is not provided on target processors, to avoid
overhead of scheduling and provision of a user interface. The

authors consider a direct interface with the user of a real-time
system neither desirable nor necessary.

Features that are needed are a) easy portability of the Operating
System (O/S) to different target machines; b) mn-toring and
operation of the target from a remote time-sharing host; c)
access to file systems on the host from programs running on tar-

get machines; d) support for high-level languages; e) remote
symbolic debugging; and f) fast communication between host and

target.

High-level language support is provided via calls to a ROM-resi-
dent nucleus on target processors, which supports interprocess
communication and interrupt handling by (remote) procedure calls.
Each target nucleus, together with a collection of processes res-
ident on the host machine, performs functions usually assigned to

the kernel level of a uniprocessor Unix.
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Interaction between host and target occurs in three areas: (1)

code generated on the host is transferred to the target; (2)
programs on each target have access to the file system of the

host; (3) for symbolic debugging, interpretation of memory images

and symbol tables of target processors is performed on the host.

Usefulness of memory allocation in an environment that lacks
hardware memory management is negligible, so Fados omits memory

allocation.

Each target processor executes a nucleus for process communica-

tion and interrupt transfer, together with processes to load user

processes into memory and handle break-points. The host provides

a command interpreter, a debugger and a file server. Communica-

tion occurs via message passing only, since on the FAMP system

memory is shared only between an individual target and the host

processor (not among multiple targets).

Interrupts are regarded as a remote procedure call emanating from

an external device, similar to the philosophy in Ada. A process
which handles interrupts must have a priority equal to or greater

than the priority of interrupts it handles. Fados's scheduling

algorithm is trivial; each process executes until it suspends

itself or another process of higher priority wakes up.

Process loading occurs in two phases, to avoid deadlock that

could result from communication with non-existent destinations.

First, all processes are made known to each of the target nuclei;

only then are process addresses passed and execution commenced.

This avoids consideration of how long each process takes to load.

The Unix host obtains a list of executable files, and for each

process to be loaded, sends a 'load process' message to the

appropriate target. After all processes have been started and

are awaiting a message, the host command interpreter forwards the

addresses of other processes and descriptors of open files.
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The Fados target debug monitor can start or stop a process,

notify the host when a breakpoint is reached, return status data,

and read or write data in the target local memory (similar to

ptrace in conventional Unix). The message oriented communication

assumes messages need be sent only once every 5 to 10 msec (the

overhead involved with more frequent reports is excessive).

Fados is an easily extended real-time operating system that oper-

ates on simple hardware. In combination with a Unix host the

system is user-friendly and easily portable to different target

hardware. Source code to be transported is modest (800 lines)

and written in a high-level language.

B.1.4 Parallel 4.2 BSD

Several universities and computer vendors have developed multi-

processing operating systems based on the 4.2 BSD version of

Unix. Required modifications include extensions to C language

compilers for support of interprocessor synchronization, and to

Unix system calls for multiprocessing within individual programs.

Xylem [Emrath85], an operating system developed for the Cedar

computer at the University of Illinois (Alliant FX/8 clusters),

and Concentrix [Test87], Alliant's proprietary Operating System

(O/S), are typical of shared-memory symmetric multiprocessing BSD

4.2 Unix designs.

Each processor runs a separate copy of the Xylem kernel and coor-

dinates its activities with others through shared memory. Memory

management is supported via the page mapping hardware of individ-

ual processors. Virtual address space is shared among the pro-

cessors, and any single processor that decides to replace one of
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the global memory pages must notify every other processor that is

using the page to mark it as invalid. Tasks that share a local

page must execute -.n the same processor cluster (i.e., on the

same bus/backplane).

Xylem task scheduling occurs at two levels. Within a single pro-

cessor a conventional scheduling algorithm manages a queue of

ready tasks kept in global memory. If a processor becomes idle,

a multi-processor scheduler is invoked to compare a queue of

ready processors with the process ready queue. (Recall that a

"Unix" process may consist of multiple tasks.) To assign all

ready tasks of a process simultaneously, a multi-processor

scheduler allocates several idle processors at the same time.

Although Alliant distinguishes interactive processors (IPs) from

computational elements (CEs), the Concentrix Operating System

(0/S) also runs "symmetrically" on all processors in a system

[Test87]. Execution in kernel mode differs only with respect to

device interrupt code, which is run exclusively on the IPs. Each

IP is scheduled independently; whereas, all CEs are scheduled as

a single unit. A process that requires vectorization or concur-

rency can be scheduled only on the CEs.

Ordinary Unix (on a uniprocessor) synchronizes execution of
"system-streams" (user and non-interrupt kernel processes) with

"interrupt-streams" (kernel interrupt handling) by prohibiting

preemption in kernel mode. System-streams protect their critical

sections from interruption by raising their processor priority.

Concentrix has to deal with more complicated synchronization

problems that result from multi-processor operation. Among these

are conflicts between: a) pairs of system-streams on two separate

processors; b) system- and interrupt- streams across processors;

and c) pairs of interrupt-streams on two separate processors.
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To resolve these, the implementors of Concentrix resorted to a

combination of priority level locking and a hierarchy of global

test-and-set based synchronization locking mechanisms. Source

code was carefully adjusted to minimize lock holding time in

critical sections.

Inter-processor communication is supported through a "cross-

processor interrupt" (CPI), which can trigger remote procedure

call (RPC) handlers on other processors. Hardware I/O device

drivers manage a distributed shared Multibus address space via

careful use of global locks and RPCs. Device drivers arrange to

proceed transparently with I/O activity (buffer management, etc.)

until actual work is required from a remote hardware device, at

which point an asynchronous RPC is initiated.

B.2 MESSAGE-BASED PARALLEL OPERATING SYSTEMS

B.2.1 Embos

Embos, a proprietary operating system for the ELXSI 6400, was

originally designed using message-passing, and subsequently modi-

fied to support shared-memory processing (in response to a cus-

tomer request). Embos relies almost exclusively on messages for

synchronization and passing data between processes [Olson85].

ELXSI processes communicate via explicit virtual circuits (logi-

cal point-to-point connection rather than datagram service). An

outgoing connection from a process is called a link; incoming

ones are collected into a "funnel". Messages on a given funnel

are delivered to the consuming process in FIFO order.
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Routing of messages is handled entirely in microcode; tables

which define links and funnels are inaccessible to application

software (insuring their integrity). The message system is fast

relative to traditional minicomputer interprocess communications,

but still slow compared with individual machine instructions.

Embos processes usually exchange short messages mostly concerned

with control and synchronization. Bulk quantities of data tend to

be transferred via I/O controllers which perform direct memory

access (DMA) into virtual address space. Messages merely syn-

chronize this data access.

Data structures in the message system cannot be stored in cache

memory because they are shared among the microcoded kernels on

each processor. Such main memory access is relatively expensive,

but acceptable given the level of service in the message system.

Embos and application programs request service via explicit mes-

sages. Multiple copies of a resource server program can exist on

one or more processors when there is more than one instance of an

underlying resource. Each server handles requests at its own

rate using private data structures. (Data sharing is explicit.)

Embos processes migrate freely among available processors in

exactly the same way as application processes. Absence of

implicitly shared data eliminates many potential problems that

arise with shared-memory concurrency.

An Embos process has no dependance on a particular physical pro-

cessor. Waiting for lower-level services is minimal. When an

operation is blocked, most processes mark the fact on a work-in

progress list and turn to the next available item in their work

queue. Servers wait only when work queues are empty or when
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preempted by a higher priority process. Further, no assumptions

are made about execution order; relative priority is not used as

an implicit concurrency control method.

The inherent asynchrony of messages and avoidance of shared
memory among operating system processes simplified Embos implem-

entation and limits performance degradation as more processors

are added to an existing configuration. Moreover, although
little attention was paid to procedure-level parallel processing

during Embos design, ELXSI was able to support the majority of

shared-memory techniques with addition of a small subroutine
library and a single new processor instruction (for flushing a
write-back data cache local to each processor).

B.2.2 Meglos

Communications requirements for a system containing hundreds of
processors differ from those of smaller distributed systems.

Meglos, an operating system under development at Bell Labs,
provides communications based on symmetric, independently flow-

controlled channels with low latency and high throughput.

Many distributed applications can be structured as sets of pro-

cesses whose communications topology is fixed, or changes only
slowly over time [Gaglianello85]. Meglos processes communicate

in pairs that establish communications channels between them-

selves before exchanging messages. This arrangement allows the

Operating System (O/S) to provide flow control, so that a process

can read from multiple incoming channels in the most convenient
order. Without such provision, a process can be flooded with

messages that it cannot digest.

B-13



Some algorithms send data repeatedly from one process to a large
number of others. With hundreds of processors, overhead of
opening separate channels and sending many identical messages can
degrade performance of any application. A more efficient method
used in Meglos provides "multicast channels" to transmit messages
to numerous other processes with a single operation.

A related problem arises when a process communicates regularly
with many others, but sends different data to each of its co-

workers. In this case Meglos provides a "unicast channel," which
resembles a multicast channel, but allows the sender to specify a

separate recipient for each message.

Meglos channels can be unbuffered (desirable for some real-time
applications), but the majority of programs require implicit
buffering on a channel to improve performance and avoid deadlock.

Buffering at the sender's end avoids blocking of the sender while
writing, and buffering at the receiver's end reduces latency when

data is not read immediately after being transmitted. Throughput
of a multicast channel is determined by its slowest reader.

Meglos supports buffering at either end of a channel, and allo-
cates buffer space from a program's own address space, rather
than a shared pool. This approach avoids contention for buffers

and helps guarantee that applications remain deadlock-free.

Buffering is mandatory for multicast channels; without it, dead-
lock will always occur when a message is sent. An arbitrary
number of processes can connect to a multicast channel. A mes-
sage sent by any one of them is forwarded to each of the others.
However, Meglos does not guarantee that all processes will read a
series of messages in the same sequence from a multicast channel.
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Communication in Meglos is unlayered. Application-level write

requests are translated directly into link-level communication

protocols by the Meglos kernel, eliminating several layers of

overhead and improving throughput. Error recovery and flow

control are handled by the link-level protocol.

Meglos resends a message only in response to a transmission

failure. Messages with bad checksums, for unopened channels, or

to non-existant processes are ignored. Message retransmission

occurs when no acknowledgement is received within a time-out

interval. The problem of endless retransmission following a lost

acknowledgement is avoided by inclusion of a on ,-bit sequence
number, inverted for each retransmission. When two successive

messages arrive with the same sequence bit, the second message is

discarded and the acknowledgement is resent.

System initialization establishes channels between kernels on

individual processes and the resource manager. Subsequently, the
resource manager is invoked when a channel or process is created

or destroyed.

Communications rates sustainable between programs are substan-

tially greater than are supported across multiple VAX 11/750

processors running BSD 4.2 Unix, or within a single Unix proces-

sor. For 1024-byte messages using bidrectional pairs of read and
write servers, Meglos provides combined throughput of 512 kbyte/

sec, compared with 160 kbyte/sec across Unix pipes in a single

processor, or 33 kbyte/sec across an Ethernet link.

Meglos latency for transfer of short messages (two bytes long)

between processors increases from 2 to 5 msec as the number of

processors varies from 2 to 1000. Latency between a pair of Unix

11/750s is 11 msec; a comparable figure for a pair of Sun work-
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stations is 3 msec. Note that the foregoing figures refer to

actual message transfer rates rather than operating speeds of the

underlying physical transfer mechanisms.

B.3 CHRYSALIS/UNIFORM SYSTEM

The Chrysalis Operating System supports an "object-oriented"

model which explicitly connects data structures with specific

operations that alter them [BBN86a, BBN86b]. Chrysalis under-

stands about several kinds of objects, including processes,

memory blocks and I/O devices. All objects have a unique 32-bit

Object Identifier (sufficient to locate any object in the entire

machine), an Object Attribute Block (descriptor), and optionally,

a name.

Each processor runs a separate copy of the kernel, which sched-

ules only its local processes. A process is the smallest entity

that can be independently scheduled. A "deadline" method is

used, which guarantees each process a minimum amount of run time

before a specified deadline time. Design of the algorithm draws

on prior experience with TOPS-20 and BBN's Pluribus system.

Other types of Chrysalis objects include events and the Dual

Queue. An event is used for interprocess communications, or to

control the flow of process execution. A process calls Chrysalis

to create events that can be delivered to the process. An event

can subsequently be posted to the process by any other process,

the operating system, or I/O hardware. The process timer is one

application of this mechanism. Chrysalis limits data storage for

each process to a single instance of an event. Multiple postings

are remembered, but data associated with all but the first is

discarded.
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An application that accepts data from several asynchronous pro-

cesses must use an alternate mechanism, the Dual Queue. The Dual

Queue is a general mechanism developed to manage the allocation

of tasks to processors (but also works well for problems other

than task allocation). A multiprocessor keeps a running record

of tasks awaiting processors and processors that are looking for

tasks to execute; yet one of these is always an empty set at a

given moment of time. Consequently only a single queue is
required, with a marker to indicate the type of object it con-

tains. Use of a Dual Queue resembles mailbox services of other

operating systems (e.g., DEC's VMS).

Beyond its repertoire of Unix-like system calls, Chrysalis also

provides application libraries that manage system resources. The

most important of these is the Uniform System library, which sup-

ports procedural language programming of BBN's Butterfly parallel

processor.

Chrysalis provides all the usual mechanisms for interprocess com-

munication, synchronization and control familiar from uniproces-

sor multitasking applications. The Uniform System provides func-

tions to assist storage and processor management, the goal of

keeping all memories and processors in a system equally busy.

Processes can share memory in two distinct ways. Restrictive

designs isolate processes from each other by mapping memory such

that only a small subset of each process address space can be

accessed by other processes. The Uniform System uses a different

approach, in which processes share a single large block of memory

that is mapped into the address space of every process.

Applications programmers need not concern themselves with manipu-

lation of memory maps. In addition, the Uniform System memory

allocator scatters application data uniformly across all memories
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of the machine. This reduces memory contention, but costs 4% to

8% in execution time (and can also complicate low-level debug-

ging).

Processor management falls naturally into two steps. First, the

programmer must identify parallel structure in an algorithm, per-

haps rearranging the number and kind of steps to improve its

potential for distributed operation. Next, the most desirable

number of concurrent operations must be determined for each

activity. Explicit construction is one way of achieving this; a

programmer arranges work so that all processors finish together.

The Uniform System instead encourages a dynamic approach to task

assignment, which makes it unnecessary to know how long each

individual step will run. Programmers are required to structure

their applications into two parts: a) subroutines that actually

perform work, and b) "generators" that identify the next task to

be executed. A serial program embeds the generator function in

its control flow; parallel programs that use the Uniform System

must make explicit decisions about task sequencing.

A typical generator function consists of three procedures and a

data structure. An "activator" procedure manages "worker" and

"task generation" procedures with reference to a description of

the data to be acted upon. The activator builds a task descrip-

tor to connect the worker, task generator and data descriptor and

then makes the task descriptor available to other processors.

The processor which called the generator function (along with

other available processors) then uses the task descriptor to

generate instances of the worker procedure to process subsets of

the data. When the last worker task completes, the generator

resumes execution of the program that invoked it.
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Generator functions conceptually resemble Lisp functions such as
mapcar (which separately applies the same action to each element
of a list). The Uniform System library provides several commonly
used generators to expedite application programming.

Implementation of the generator mechanism requires only a single
process on each processor, and no unnecessary context swaps are
incurred. Once a generator gets control, the processor kernel
need not intervene until the generator runs out of work. This
mechanism is insensitive to the number of processors, and allows
dynamic balancing of processor workloads.

B.4 ADA'S MODEL OF PARALLEL PROCESSING

Ada's mechanisms for multiprocessing are a product of its histor-
ical and technical context (Mundie86]. Since publication of the
Ada language specification, theoretical advances have suggested
that a more general synchronization mechanism would simplify
programming of many applications.

Ada provides process-level concurrency, rather than trying to
distribute evaluation of individual expressions onto multiple
processors, or execute complete statements in parallel. Con-
current processing is introduced at a subroutine level on the
assumption that each given process will execute sequentially on a
single processor.

Synchronization in Ada occurs via an "old maid" model, which
fails to specify the occurrence time of a rendezvous event,
versus merely achieving the rendezvous. This is like stipulating
merely that two people should meet each other, without worrying
about precisely where or when. In an environment containing
multiple processors, neither is certain.
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Moreover, Ada rendezvous is also a "blind date." Tasks are
asymmetric in the way they refer to each other during rendez-
vous. The task making the entry call must name the task with
which it seeks to rendezvous, but the accepting task need not.

Yet these abstract difficulties are not the only problems with

rendezvous.

Ada's rendezvous mechanism uses an implicit queueing scheme that
can be implemented using semaphores. This is motivated by a
desire for efficient code in real-time applications. Each point
at which rendezvous can take place in a target task is indicated
by an "entry," which resembles a procedure call heading. If its
target is not available, Ada suspends the task requesting rendez-

vous until the target becomes available.

Although Ada eschews direct use of low-level primitives such as
semaphores, its rendezvous model stipulates a restriction that
encumbers implementation of otherwise desirable abstract tasking
designs. Section 9.5.15 of the Language Reference Manual 7tates
that suspension of a task requesting rendezvous is accomplished
by providing a separate queue for each entry in the target task.
This approach uses the same mechanism for both mutual exclusion

and task synchronization, just as is the case in systems that use

explicit semaphores.

Efficient implementation of a queue-per-entry model results in

the "blind date" reference convention, and also requires that
entries be declared in the task that accepts them. For the same
reason, the Ada select statement provides multiple simultaneous
rendezvous requests, but does not allow mixed entry calls and

accepts, nor multiple calls.
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A common application of rendezvous is to control access to a

shared resource. Entries can be declared only in the visible

part of a task which accepts them, hence only one task can accept

a given entry. The usual solution to this problem introduces a

turnaround task as an intermediary between the resource and its

users. Rendezvous must therefore occur between the user and the

intermediary, rather than directly with the resource. Blocking a

user, while the resource services its current request, blocks all

other customers and instances of the resource as well. To avoid

this difficulty within the Ada model, an application program must

provide an additional layer of synchronization mechanisms.

A more general form of tasking in which entry queues are not

directly associated with tasks would allow a programmer to block

only the calling task, so that a given service can be provided by

many different accepting tasks. A rendezvous between a user and

a device then has no effect on similar users and devices.

Queue-per-entry rendezvous also does not guarantee fairness,

i.e., it is possible for a task to become permanently blocked

while waiting for a rendezvous. The only way to avoid this is to

scan the queue of every entry declared in a task prior to enter-

ing rendezvous, to determine the oldest pending rendezvous

request. This solution is unfortunately very expensive (and

cumbersome).

Finally, tasking in Ada is meant to be implemented in a run-time

package that conceals details of the underlying hardware or oper-

ating system. A highly parallel computer system should have

available a language which allows the user to fully exploit the

increased capabilities of the machine (Cline85]. Yet in Ada,

even hardware-level interrupts are attached to parameterless

library entries. Although such libraries are not portable, the

programmer is prohibited from taking advantage of novel features

of contemporary multicomputer hardware and operating systems.
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B.5 LOAD SHARING

MulLi-processor scheduling is often considered a monolithic prob-

lem, to be solved as a single action using global knowledge.
Multiple tasks are assigned to multiple servers, but there is

only one decision maker. Yet a centralized scheduling algorithm

can itself become a bottleneck (even when executed as a parallel

computation). Distributed scheduling assigns tasks to processors
without use of a central dispatch. Tasks are introduced into the

system via "source" nodes are executed by "server" nodes.

Whether sources or servers take the initiative in matching work

to resources is a necessary design decision.

A global scheduling strategy is a collection of algorithms

performed by sources, servers and their communication links.

(Local allocation of processing resources when multiple tasks

exist on a single server is a well-understood problem in queueing

theory.) Equitable allocation of processing resources to tasks,

or "load sharing," is a key function of global scheduling.

(Wang85] systematically describes several load sharing algorithms

and classifies them into a taxonomy. The first major distinction

made is source- versus server-initiative design; the other axis

of comparison concerns "information dependancy" of a strategy,

i.e., how much a source node must know about the status of

servers, or a server about its potential sources. Traditional
monolithic scheduling can be viewed as level 1 source-initiative

(static partitioning) with a single source (the central control).

Source-initiative algorithms form queues at servers and make

scheduling decisions as tasks arrive at sources, whereas server-

initiative ones form queues at sources and schedule assignments

when a server completes a task. The performance analysis of
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(Wang85] reveals that when communication costs are not a dominat-

ing effect, server-initiative tends to outperform source-initia-

tive for a given level of information dependency.

Most server-initiative algorithms do not allow a server to become

idle when there are tasks waiting in the system (a task is never

left waiting in line at a busy server while another stands

unoccupied; an idle server spends its time searching for work).

Also, some types of source-initiative algorithms degrade rapidly

as variability of service times increases or the number of

servers become large. (Additional detail appears in Figures 2

through 14 of [Wang85]).

[Wang85]'s comparison uses a quality factor which measures how

closely an algorithm resembles a multiserver first-come-first-

serve (FCFS) system for EVERY task. Their model assumes a com-

munications medium which provides only simple message passing

(without broadcast, virtual addressing, or conditional recep-

tion). The performance analysis involves unsolved problems in

queueing theory, which the authors circumvented via simulation.

B.6 REAL-TIME OPERATION

B.6.1 General Considerations

Real-time operation requires availability of results within a

given time span after the arrival of input data (Halang86a].

"Deadline driven" scheduling (task execution ordered by increas-

ing deadline) is a natural method to use for this, but features

of commercially available hardware and operating system software

have hampered its widespread adoption.
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Deadline-driven scheduling yields a minimum number of task pre-

emptions, and consequently reduces context switching overhead and

resource synchronization problems on a uniprocessor. It also

generates an optimal (preemptive) schedule even when additional

runnable tasks are added to an already executing task set.

Task preemption on a symmetric configuration of M processors

increases communications overhead (as well as context switching

overhead), especially for designs which lack shared memory (e.g.,

hypercube architectures). Determination of whether a specific

set of tasks can be processed within a given interval requires a

rather complex analysis (for M > 1), irrespective of preemption.

Moreover, structural constraints can extend running time on

symmetric multiprocessor configurations beyond that of a single

processor of M times greater power, irrespective of overhead.

Unfortunately, deadline-driven assignment is infeasible for

symmetric multiprocessor configurations. A "single-processor"

system supplemented with "peripheral devices" specialized for

carrying through functions of an operating system nucleus (i.e.,

an asymmetric multiprocessor) avoids this difficulty, as does a

collection of uniprocessors each of which is dedicated to a

specific part of a longer sequential process.

Thus, to minimize context-switching and potential deadlock due to

resource contention, it seems prudent to maintain strictly

sequential handling of task sets imposed by a deadline-driven

scheduling algorithm, insofar as possible. This goal fits neatly

into overlapping execution in an asymmetric parallel processor,

with alignment via interval deadlines.
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When an application presents absolute deadlines which cannot be

relaxed, asymmetric parallelism is preferable to a collection of

identical multiple processors. Deviations from normal program

flow on the main processor(s) should be handled by dedicated
"peripheral" units to provide reaction to external events under

predefined, guaranteed time limits.

When predictable real-time response is guaranteed, one may con-

sider precisely when (rather than merely whether) a synchroniza-

tion event will occur. Exact simultaneous manipulation of

external parallel activity is beyond the capability of existing

commercial "real-time" computers. Military systems are no better;

Ada lacks any facility for specifying the occurence time of a

rendezvous event, versus merely achieving the rendezvous.

Rendezvous itself can be a far from trivial problem. Despite a

quintuply-redundant computer system, the first US Space Shuttle

mission was delayed by 24 hours only minutes before launch due to

an implementation error affecting synchronization initialization

among the five computers. [Garman8l] The problem arose from a 1-

in-67 probability involving a queue that wasn't empty when it

should have been and modeling of past and future time.

What matters in real-time control is not only "how fast" but also
"exactly when." A computer control system has to provide timely

and simultaneous response to multiple events, even under extreme

workloads. However, simultaneous manipulation of several paral-

lel control activities can only be approximated on a single

processor. Response times depend on the computer's workload,

hence the interval between arrival of a given signal and output

of control information is an unpredictable function of operating

system overhead.
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Control theory often incorrectly assumes that a negligible time

delay intervenes between measurement of a control variable and

the resulting control action. However, even a small delay can

cause the control loop to become unstable with respect to param-

eter variations or disturbance inputs. To avoid this, both

acquisition of multiple state variables and output of multiple

control signals should involve strictly simultaneous events.

The objective of external simultaneity can be achieved by speci-

fying the exact times at which data exchange with a control

activity should occur, and assuring that peripheral units contain

hardware necessary to carry through time-related functions

(Halang86b].

Language syntax and operating system services to support the

foregoing objective are natural extensions of the additional

hardware components (clocks, counters, and latches) needed to

provide the required timestamping and triggering functions.

Such services also permit resource synchronization based on

methods used in everyday life for scheduling meetings, making

airline reservations, and similar activities. Individual tasks

(travelers) request points in future time at which they will use

specific peripherals (airline seats). The Operating System (0/S)

(reservation desk) assigns time slots to the requests, and main-

tains them in a queue (but does NOT remove an "airline seat" from

service for the whole interval between reservation and use).

Synchronization conflicts which arise are resolved IN ADVANCE on

a priority basis, with exception handling ("sorry sir, that

flight is booked up ... ").
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This is very far from being possible in existing commercial real-

time computer technology. For example, Ada's so-called rendez-

vous mechanism is comparable to specifying merely that two people

should meet each other, without stipulating precisely where or

when. For a uniprocessor, at least the former is implicitly

known, but in an environment containing multiple processors,

neither is certain.

Hardware support for precisely timed fully parallel process I/O

requires:

a) REAL-TIME CLOCK INPUT be available to every I/O device;

b) CLOCK COUNTERS be integrated into each I/O controller,

driven by the controlling computer's clock signal and

started and reset with the same signal used to. reset

the controlling computer;

c) ARRIVAL TIMES of externally triggered data inputs be

latched upon assertion of a handshake signal;

d) hold registers to record TRIGGER TIMES for command

outputs, with command execution controlled by compar-

ators fed by the real-time clock input.

Reading a system clock immediately after an input statement in an

application task cannot account for the unpredictable delay which

arises from details of interaction between low-level device hand-

lers and the remainder of the operating system (e.g., as between

assertion of a data ready interrupt signal by the controller and

execution of an input statement in the task).
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The mechanisms necessary to provide exact knowledge of when an
input arrives and precise control of when a command is executed
by a peripheral controller are straightforward; but they cannot
be correctly implemented in software as an afterthought.

B.6.2 A Real-Time Multiprocessing System

Research in support of an Adaptive Suspension Vehicle (ASV) at
Ohio State University (OSU) has produced a Generalized Executive

for real-time Multiprocessor applications (GEM) (Schwan87]. GEM
supports a large variety of operating system primitives to suit
various constraints of subproblems in robotics applications.

The STILE design prototype tool under development as part of OSU
GEM generates real-time multiprocessing programs from high-level

graphical descriptions. Component blocks selected from one or
more user-prepared libraries can be connected together using a

graphical editor.

GEM itself supports medium-grain parallelism of control tasks
against real-time av reliability constraints, and offers two
different grain sizes: large loosely interacting tasks that
execute infrequently ("processes") versus small closely coupled

tasks that execute at high rates ("microprocesses"). The GEM
executive schedules, synchronizes and executes tasks within

strict time constraints.

GEM recognizes the importance of exact timing (relative to an
external context); its current target hardware architecture uses

a single global clock. Communication under GEM can occur via
either shared memory or message passing. The message passing
method is not desirable for low-latency process interactions or

service of high-rate actuators.
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Each microprocess consists of a sequence of instructions and

associated data structures. It shares its address space with
other microprocesses in the same process. Together a set of

these provide multiple streams of execution defined and activated
in a single GEM process, controlled by a single microscheduler

defined statically as part of the parent process. A microprocess

lacks many of the data structures of a lightweight process and
never executes independently from its parent process. It resem-

bles an event handler in that it always runs to completion.

Processes are structured into hierarchical sets with synchronous

or asynchronous interaction, and can interact using either of two

distinct models of communication: 1) inputs are current values
of hardware sensors, with outputs also a set of current values;

and 2) inputs and outputs are both discrete messages that contain

commands or data values. Processes are always created stati-

cally, during initialization of a complex system.

GEM implements two methods of scheduling: Round-robin (conven-

tional time-sliced multitasking); and Deadline (in which a time
interval for completion is specififed, measured from the time a

task is made ready to completion of every microprocesses therein

that is ready to run). Priority scheduling is supported under

both methods (deadline runs processes within each priority level
to completion in "shortest deadline first" order).

Deadline scheduling is not currently being used in GEM's target

application, the Adaptive Suspension Vehicle (ASV). Use of
microprocesses accomplishes many of the same objectives, however.
For prompt real-time response to requests for services that are

implemented by microprocesses, a simple high-performance mechan-

ism is used, which resembles blocking mechanisms in other oper-

ating systems.
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Service is requested by writing into a control input, as an event

separate from communication of data values. Thus, data can be

set up well in advance of an event, and triggered with minimum

latency delay. In contrast to the hardware-assisted mechanisms

described in [HALANG86b], multiple writes to the same control

port are lost if they appear more frequently than a microprocess

can service them.

Microprocess scheduling time includes the potential cost of wak-
ing up the parent process of the microprocess. Analysis of pro-

cess and microprocess latency indicates that if there is at least

a 50 percent chance of finding the parent process and its micro-
scheduler running, use of a microprocess is faster on average

than use of an equivalent process.

GEM provides three different models of task interaction:

1) asynchronous execution with potential loss of data

(reader always receives most recent data written);

2) synchronous execution without possible data loss (an

error code returned when a reader encounters an empty
input queue, or a writer finds a full one);

3) synchronous or asynchronous operation with possible
loss of aged data (e.g., overflow in data logging);

readers get an error code from an empty input queue,

but writers may overwrite the oldest information

therein.

The authors of (Schwan87] claim model 1 is the most useful for

low-level control, as an approximation of an "analog" computa-

tion.
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The STILE graphic prototyping facility supports application

development within GEM. A basic object in STILE contains user
application code and generic communication code. Each describes

a set of microprocesses in a GEM process, is separately compiled
and collected in a component (object code) library.

The graphical editor supports interconnection of finished compo-

nents selected from a library, with automatic generation of com-
mand files and initialization code to link, load and startup a

prototype application. Graphic elements are boxes (active agents

in a program); ports (connection points on the boxes); and links,

(connections between ports).

STILE's port-to-port connections assume that a reader always
receives the most recent data written to it (asynchronous with

potential data loss, model 1 above). Port IDs are local to the
object, and interconnection is implemented independently of the

internal details of objects.
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